最优贸易
题目描述
C 国有n 个大城市和m 条道路,每条道路连接这n 个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的道路在统计条数时也计为1条。C 国幅员辽阔,各地的资源分布情况各不相同,这就导致了同一种商品在不同城市的价格不一定相同。但是,同一种商品在同一个城市的买入价和卖出价始终是相同的。商人阿龙来到 C 国旅游。当他得知同一种商品在不同城市的价格可能会不同这一信息之后,便决定在旅游的同时,利用商品在不同城市中的差价赚回一点旅费。
设C 国n 个城市的标号从1~ n,阿龙决定从1 号城市出发,并最终在n 号城市结束自己的旅行。在旅游的过程中,任何城市可以重复经过多次,但不要求经过所有n 个城市。阿龙通过这样的贸易方式赚取旅费:他会选择一个经过的城市买入他最喜欢的商品——水晶球,并在之后经过的另一个城市卖出这个水晶球,用赚取的差价当做旅费。由于阿龙主要是来C 国旅游,他决定这个贸易只进行最多一次,当然,在赚不到差价的情况下他就无需进行贸易。
假设 C 国有5 个大城市,城市的编号和道路连接情况如下图,单向箭头表示这条道路
为单向通行,双向箭头表示这条道路为双向通行。假设 1~n 号城市的水晶球价格分别为4,3,5,6,1。阿龙可以选择如下一条线路:1->2->3->5,并在2 号城市以3 的价格买入水晶球,在3号城市以5 的价格卖出水晶球,赚取的旅费数为2。阿龙也可以选择如下一条线路 1->4->5->4->5,并在第1 次到达5 号城市时以1 的价格买入水晶球,在第2 次到达4 号城市时以6 的价格卖出水晶球,赚取的旅费数为5。
现在给出 n 个城市的水晶球价格,m 条道路的信息(每条道路所连接的两个城市的编号以及该条道路的通行情况)。请你告诉阿龙,他最多能赚取多少旅费。
输入
第一行包含 2 个正整数n 和m,中间用一个空格隔开,分别表示城市的数目和道路的数目。
第二行 n 个正整数,每两个整数之间用一个空格隔开,按标号顺序分别表示这n 个城市的商品价格。
接下来 m 行,每行有3 个正整数,x,y,z,每两个整数之间用一个空格隔开。如果z=1,表示这条道路是城市x 到城市y 之间的单向道路;如果z=2,表示这条道路为城市x 和城市y 之间的双向道路。
输出
包含1 个整数,表示最多能赚取的旅费。如果没有进行贸易,则输出0。
样例输入
5 5
4 3 6 5 1
1 2 1
1 4 1
2 3 2
3 5 1
4 5 2
样例输出
4
提示
输入数据保证 1 号城市可以到达n 号城市。
对于 10%的数据,1≤n≤6。
对于 30%的数据,1≤n≤100。
对于 50%的数据,不存在一条旅游路线,可以从一个城市出发,再回到这个城市。
对于 100%的数据,1≤n≤100000,1≤m≤500000,1≤x,y≤n,1≤z≤2,1≤各城市水晶球价格≤100。
分析:
不懂为什么李总把这题放到最短路专题里,明明就是一道$DAGDP$。。。
有很多大佬用的是什么$Tarjan$缩点,$SPFA$,分层图状态转移等一系列高端操作。。。然后蒟蒻只能默默地打了个$DFS+DP$,然后$A$了。。。
Code:
//It is made by HolseLee on 17th Aug 2018 //Luogu.org P1073 #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<iostream> #include<iomanip> #include<vector> #include<algorithm> #define Max(a,b) (a)>(b)?(a):(b) #define Min(a,b) (a)<(b)?(a):(b) #define Swap(a,b) (a)^=(b)^=(a)^=(b) #define Abs(a) (a)>0?(a):-(a) using namespace std; const int N=1e5+7; const int inf=0x7f7f7f7f; int n,m,c[N],f[N],mi[N]; vector<int>e[N]; inline int read() { char ch=getchar();int num=0;bool flag=false; while(ch<'0'||ch>'9'){if(ch=='-')flag=true;ch=getchar();} while(ch>='0'&&ch<='9'){num=num*10+ch-'0';ch=getchar();} return flag?-num:num; } inline void dfs(int x,int minn,int las) { bool flag=true; minn=Min(minn,c[x]); if(mi[x]>minn)mi[x]=minn,flag=false; int maxx=Max(f[las],c[x]-minn); if(f[x]<maxx)f[x]=maxx,flag=false; if(flag)return; for(int i=0;i<e[x].size();++i) dfs(e[x][i],minn,x); } int main() { n=read();m=read(); for(int i=0;i<=n;++i)mi[i]=inf; for(int i=1;i<=n;++i)c[i]=read(); int x,y,z; for(int i=1;i<=m;++i){ x=read(),y=read(),z=read(); e[x].push_back(y); if(z==2)e[y].push_back(x); } dfs(1,inf,0); printf("%d ",f[n]); return 0; }