Petr and Permutations
格式难调,题面就不放了。
分析:
胡乱分析+猜测SP性质一波。然后被学长告知:“1~n的排列交换次数与逆序对的奇偶性相同。”然后就愉快地A了。
因为$3n$和$7n+1$的奇偶性是一定不同的,那么就求逆序对的奇偶性然后判断即可。(太久没打逆序对了,都不会打了。。一开始还打错了。。)
Code:
//It is made by HolseLee on 26th July 2018 //CF986B #include<bits/stdc++.h> using namespace std; const int N=1e6+7; int n,a[N],c[N],ans; inline int lowbit(int x) { return x&-x; } inline void insert(int x,int y) { for(;x<=n;x+=lowbit(x))c[x]+=y; } inline int quary(int x) { int ret=0; for(;x>0;x-=lowbit(x))ret+=c[x]; return ret; } int main() { ios::sync_with_stdio(false); cin>>n; for(int i=1;i<=n;i++){ cin>>a[i]; insert(a[i],1); ans+=i-quary(a[i]); } ans%=2; if(!(n%2))cout<<(ans?"Um_nik":"Petr")<<" "; else cout<<(ans?"Petr":"Um_nik")<<" "; return 0; }