• uestc 360(区间合并)


    题意:有一个长度为n的序列。然后有两种操作,Q a b是输出区间a b内最长上升子序列的长度。A a b c是把区间a b内全部数字加上c。
    题解:用线段树维护区间的最长上升子序列长度,那么一个区间的最长上升子序列有三种可能,从左端点开头的一段,或者中间的一段,或者中间到右端点一段。所以线段树应该要维护liml和limr表示当前区间左端点向右延伸上升长度和右端点向左延伸的上升长度,然后在求当前区间的最长上升子序列长度时,是左子区间的和右子区间的上升子序列长度,以及当前区间的liml和limr的较大值。

    假设左子区间右端点小于右子区间左端点。那么还能够是左子区间limr和右子区间的liml的合并。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    const int N = 100005;
    struct Tree {
        int addv, liml, limr;
        int len, lv, rv;
    }tree[N << 2];
    int n, q, a[N];
    char op[5];
    
    void pushup(int k, int left, int right) {
        int lenn = right - left + 1;
        tree[k].lv = tree[k * 2].lv;
        tree[k].rv = tree[k * 2 + 1].rv;
        tree[k].liml = tree[k * 2].liml;
        tree[k].limr = tree[k * 2 + 1].limr;
        tree[k].len = max(tree[k * 2].len, tree[k * 2 + 1].len);
        if (tree[k * 2].rv < tree[k * 2 + 1].lv) {
            if (tree[k * 2].liml == lenn - (lenn / 2))
                tree[k].liml += tree[k * 2 + 1].liml;
            if (tree[k * 2 + 1].limr == lenn / 2)
                tree[k].limr += tree[k * 2].limr;
            tree[k].len = max(tree[k].len, tree[k * 2].limr + tree[k * 2 + 1].liml);
        }
        tree[k].len = max(tree[k].len, max(tree[k].liml, tree[k].limr));
    }
    
    void pushdown(int k) {
        if (tree[k].addv) {
            tree[k * 2].addv += tree[k].addv;
            tree[k * 2 + 1].addv += tree[k].addv;
            tree[k * 2].lv += tree[k].addv;
            tree[k * 2 + 1].lv += tree[k].addv;
            tree[k * 2].rv += tree[k].addv;
            tree[k * 2 + 1].rv += tree[k].addv;
            tree[k].addv = 0;
        }
    }
    
    void build(int k, int left, int right) {
        tree[k].addv = 0;
        if (left == right) {
            tree[k].lv = tree[k].rv = a[left];
            tree[k].liml = tree[k].limr = tree[k].len = 1;  
            return;
        }
        int mid = (left + right) / 2;
        build(k * 2, left, mid);
        build(k * 2 + 1, mid + 1, right);
        pushup(k, left, right);
    }
    
    void modify(int k, int left, int right, int l, int r, int x) {
        if (l <= left && right <= r) {
            tree[k].addv += x;
            tree[k].lv += x;
            tree[k].rv += x;
            return;
        }
        pushdown(k);
        int mid = (left + right) / 2;
        if (l <= mid)
            modify(k * 2, left, mid, l, r, x);
        if (r > mid)
            modify(k * 2 + 1, mid + 1, right, l, r, x);
        pushup(k, left, right);
    }
    
    int query(int k, int left, int right, int l, int r) {
        if (l <= left && right <= r)
            return tree[k].len;
        pushdown(k);
        int mid = (left + right) / 2;
        if (mid >= r)
            return query(k * 2, left, mid, l, r);
        if (mid < l)
            return query(k * 2 + 1, mid + 1, right, l, r);
        int res = max(query(k * 2, left, mid, l, mid), query(k * 2 + 1, mid + 1, right, mid + 1, r));
        if (tree[k * 2].rv < tree[k * 2 + 1].lv) {
            int temp1 = min(mid - l + 1, tree[k * 2].limr);
            int temp2 = min(r - mid, tree[k * 2 + 1].liml);
            res = max(res, temp1 + temp2);
        }
        return res;
    }
    
    int main() {
        int t, cas = 1;
        scanf("%d", &t);
        while (t--) {
            scanf("%d%d", &n, &q);
            for (int i = 1; i <= n; i++)
                scanf("%d", &a[i]);
            build(1, 1, n);
            printf("Case #%d:
    ", cas++);
            int l, r, x;
            while (q--) {
                scanf("%s", op);    
                if (op[0] == 'q') {
                    scanf("%d%d", &l, &r);
                    printf("%d
    ", query(1, 1, n, l, r));
                }
                else {
                    scanf("%d%d%d", &l, &r, &x);
                    modify(1, 1, n, l, r, x);
                }
            }
        }
        return 0;
    }
  • 相关阅读:
    罗辑思维 140 认钱不认人(刚需是扯淡,一切都是稀缺,人生全是选择)——理性永远都是最珍贵的
    程序最多能new多少内存(2G内存里要放程序的5大区,HeapAlloc比new要快多了,而且超过2G的时候会告诉你)
    Qt中使用ActiveX(3篇)
    windows下的socket网络编程(入门级)
    网络数据包发送工具PacketSender中文源码
    avalon.js实现一个简易日历
    avalonJS入门(一)
    JS中的模块规范(CommonJS,AMD,CMD)
    程序员必看的书
    简单的语音聊天室
  • 原文地址:https://www.cnblogs.com/cynchanpin/p/7338220.html
Copyright © 2020-2023  润新知