• 讲一下numpy的矩阵特征值分解与奇异值分解


    1、特征值分解

    主要还是调包:

    from numpy.linalg import eig

    特征值分解:  A = P*B*PT  当然也可以写成 A = QT*B*Q  其中B为对角元为A的特征值的对角矩阵,P=QT

    首先A得对称正定,然后才能在实数域上分解,

    >>> A = np.random.randint(-10,10,(4,4))
    >>> A
    array([[  6,   9, -10,  -1],
           [  5,   9,   5,  -5],
           [ -8,   7,  -4,   4],
           [ -1,  -9,   0,   6]])
    
    >>> C = np.dot(A.T, A)
    >>> C
    array([[126,  52,  -3, -69],
           [ 52, 292, -73, -80],
           [ -3, -73, 141, -31],
           [-69, -80, -31,  78]])
    
    >>> vals, vecs = eig(C)
    >>> vals
    array([357.33597086, 174.10172008,   8.84429957,  96.71800949])
    >>> vecs
    array([[-0.28738314, -0.51589436, -0.38221983, -0.71075449],
           [-0.87487263,  0.12873861, -0.24968051,  0.39456798],
           [ 0.2572149 , -0.69304313, -0.33950158,  0.58161018],
           [ 0.29300052,  0.48679627, -0.82237845, -0.02955945]])

    故使用时应先将特征值转换为矩阵:

    >>> Lambda = np.diag(vals)
    >>> Lambda
    array([[357.33597086,   0.        ,   0.        ,   0.        ],
           [  0.        , 174.10172008,   0.        ,   0.        ],
           [  0.        ,   0.        ,   8.84429957,   0.        ],
           [  0.        ,   0.        ,   0.        ,  96.71800949]])
    
    >>> np.dot(np.dot(vecs, Lambda), vecs.T) # 与C=A.T*A相等
    array([[126.,  52.,  -3., -69.],
           [ 52., 292., -73., -80.],
           [ -3., -73., 141., -31.],
           [-69., -80., -31.,  78.]])
    
    >>> np.dot(np.dot(vecs.T, Lambda), vecs)
    array([[171.65817919,  45.58778569,  53.20435074,  13.37512137],
           [ 45.58778569, 125.15670964,  28.22684299, 134.91290105],
           [ 53.20435074,  28.22684299, 129.48789571,  80.5284382 ],
           [ 13.37512137, 134.91290105,  80.5284382 , 210.69721545]])

    故验证了使用np中的eig分解为A=P*B*PT 而不是A=QT*B*Q,其中P=vecs

    即 C = vecs * np.diag(vals) * vecs.T # 这里简写*为矩阵乘法 

    然后再来看使用np中的eig分解出来的vec中行向量是特征向量还是列向量是特征向量,只需验证:A*vecs[0] = vals[0]*vecs[0]

    >>> np.dot(C, vecs[0])
    array([-12.84806258, -80.82266859,   6.66283128,  17.51094927])
    >>> vals[0]*vecs[0]
    array([-102.69233303, -184.34761071, -136.58089252, -253.97814676])
    
    >>> np.dot(C, vecs[:,0])
    array([-102.69233303, -312.62346098,   91.91213634,  104.69962583])
    >>> vals[0]*vecs[:, 0]
    array([-102.69233303, -312.62346098,   91.91213634,  104.69962583])

    后者两个是相等的,故使用np中的eig分解出的vecs的列向量是特征向量。

    然后我们可以验证P是单位正交矩阵

    >>> np.dot(vecs.T, vecs)
    array([[ 1.00000000e+00, -7.13175042e-17, -2.45525952e-18,
             2.75965773e-16],
           [-7.13175042e-17,  1.00000000e+00,  2.49530948e-17,
            -5.58839097e-16],
           [-2.45525952e-18,  2.49530948e-17,  1.00000000e+00,
            -7.85564967e-17],
           [ 2.75965773e-16, -5.58839097e-16, -7.85564967e-17,
             1.00000000e+00]])
    
    >>> np.dot(vecs, vecs.T)
    array([[ 1.00000000e+00,  2.97888865e-16, -2.68317972e-16,
             1.69020590e-16],
           [ 2.97888865e-16,  1.00000000e+00, -4.40952204e-18,
            -6.24188690e-17],
           [-2.68317972e-16, -4.40952204e-18,  1.00000000e+00,
            -1.13726775e-17],
           [ 1.69020590e-16, -6.24188690e-17, -1.13726775e-17,
             1.00000000e+00]])
    
    # 可以看到除对角元外其他都是非常小的数

    PT*P = P*PT = E , PT=P-1。事实上,在求解P的过程中就使用了施密特正交化过程。

    另一方面,我们从数学角度来看:

    首先补充一些数学知识:可以看我另一篇文章:矩阵知识

    A = P*B*P-1  ,其中B为对角元素为A的特征值的对角阵,P的列向量为特征值对应的特征向量(因为B每行乘以P每列)

    2、奇异值分解

    还是调包:

    from numpy.linalg import svd

    设任意矩阵A是m*n矩阵

    奇异值分解:A = U*Σ*VT , 其中U为满足UTU=E的m阶(m*m)酉矩阵,Σ为对角线上为奇异值σi 其他元素为0的广义m*n对角阵,V为满足VTV=E的n阶(n*n)酉矩阵

    a = np.random.randint(-10,10,(4, 3)).astype(float)
    
    '''
    array([[ -9.,   3.,  -7.],
           [  4.,  -8.,  -1.],
           [ -1.,   6.,  -9.],
           [ -4., -10.,   2.]])
    '''
    
    In [53]: u, s, vh = np.linalg.svd(a)    # 这里vh为V的转置
    
    In [55]: u.shape, s.shape, vh.shape
    Out[55]: ((4, 4), (3,), (3, 3))
    
    '''
    In [63]: u
    Out[63]:
    array([[-0.53815289,  0.67354057, -0.13816841, -0.48748749],
           [ 0.40133556,  0.1687729 ,  0.78900752, -0.43348888],
           [-0.59291924,  0.04174708,  0.59180987,  0.54448603],
           [ 0.44471115,  0.71841213, -0.09020922,  0.52723647]])
    
    In [64]: s
    Out[64]: array([16.86106528, 11.07993065,  7.13719934])
    
    In [65]: vh
    Out[65]:
    array([[ 0.31212695, -0.760911  ,  0.56885078],
           [-0.74929793, -0.56527432, -0.3449892 ],
           [ 0.58406282, -0.31855829, -0.74658639]])
    '''
    
    
    In [56]: np.allclose(a, np.dot(u[:, :3] * s, vh))
    Out[56]: True
    
    
    # 将s转化为奇异值矩阵
    In [60]: smat[:3, :3] = np.diag(s)
    
    In [61]: smat
    Out[61]:
    array([[16.86106528,  0.        ,  0.        ],
           [ 0.        , 11.07993065,  0.        ],
           [ 0.        ,  0.        ,  7.13719934],
           [ 0.        ,  0.        ,  0.        ]])
    
    
    # 验证分解的正确性
    In [62]: np.allclose(a, np.dot(u, np.dot(smat, vh)))
    Out[62]: True
  • 相关阅读:
    Java快速教程
    让我们来了解一下:操作系统和平台相关性
    初窥Linux 之 我最常用的20条命令
    ES6学习笔记一
    Data时间管理大全
    generator多返回值写法
    箭头函数=>
    闭包
    高阶函数:map/reduce
    函数方法that与apply
  • 原文地址:https://www.cnblogs.com/cymwill/p/9937850.html
Copyright © 2020-2023  润新知