• 动态规划-背包问题


      1. 0-1背包
        • 题意: 给定一个具备一定承重的背包,给定n个物品,每个物品具备一定的价值,和重量,每个物品只能装一次,问最大能装多大价值的物品。
    for(int i=0;i<n;i++){//考虑前i个物品
            for(int j=m;j>=0;j--){//考虑背包承重为j的时候
                if(j>=w[i]){//如果物品能够放进背包
                    dp[j] = max(dp[j],dp[j-w[i]]+v[i]);//考虑放与不放的最大值
                }
            }
        }
      1. 完全背包
        • 题意: 给定一个具备一定承重的背包,给定n个物品,每个物品具备一定的价值,和重量,每个物品可以装任意次,问装满背包最大(小)能装多大价值的物品。
    for(int i=0;i<n;i++){   //考虑前i个物品
              for(int j=0;j<=m;j++){//考虑背包称重为j 的时候
                if(j>=w[i]){       //如果物品能够放进去
                    dp[j] = min(dp[j],dp[j-w[i]]+v[i]);
                }
              }
          }
      1. 多重背包
        • 题意:给定一个具备一定承重的背包,给定n个物品,每个物品具备一定的价值,和重量,每个物品能够装有限次,问最大能装多大价值的物品。
        • 通过进行拆分之后,利用0-1背包进行求解。任何数量k都可以拆解为(2^0,2^1,2^2, … 2^i,k-(2^0+2^1+…+2^i)。并且1-k之内的数字都能用上面的数字组合出来,例如6拆分成(1,2,3) 1-6之间的数字都能用上述三个数字组合出来,因此拆分之后可利用0-1背包求解
    for(int i=0;i<m;i++){//拆分
        int temp = 1;
        int num,volumn,value;
        cin>>num>>volumn>>value;
        while(num-temp>0){
            g[cnt].volumn = temp*volumn;
            g[cnt].value = temp*value;
            cnt++;
            num = num - temp;
            temp = temp*2;
        }
            g[cnt].volumn = num*volumn;
            g[cnt].value = num*value;
            cnt++;
     }
     for(int i=0;i<cnt;i++){
         for(int j=v;j>=g[i].volumn;j--){
             dp[j] = max(dp[j],dp[j-g[i].volumn]+g[i].value);
         }
     }
  • 相关阅读:
    LeetCode
    已知二叉树的先序遍历和中序遍历序列求后序遍历序列
    LeetCode
    LeetCode
    LeetCode
    LeetCode
    LeetCode
    TCP协议的基本规则和在Java中的使用
    Java中UDP协议的基本原理和简单用法
    LeetCode
  • 原文地址:https://www.cnblogs.com/cyj1258/p/12153804.html
Copyright © 2020-2023  润新知