• Python 并发编程之协程


    引子

    可以基于单线程来实现并发,即只用一个主线程(很明显可以利用的CPU只有一个)情况下实现并发,我们需要了解并发的本质就是:切换 + 保存状态

    cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作系统强制控制),一种情况是该任务发生了阻塞,另外一种情况是该任务计算的时间过长或有一个优先级更高的程序替代了它。

    正是这种切换,实现看起来所有任务都被 "同时" 执行的效果,如果多个任务都是纯计算的,这种切换反而会降低效率。为此我们可以基于yield来验证。yield本身就是一种在单线程下可以保存任务运行状态的方法,我们来简单复习一下:

    #1 yiled可以保存状态,yield的状态保存与操作系统的保存线程状态很像,但是yield是代码级别控制的,更轻量级
    #2 send可以把一个函数的结果传给另外一个函数,以此实现单线程内程序之间的切换

    用yield实现简单的协程

    import time
    import queue
    
    
    def consumer(name):
        print("--->starting eating baozi...")
        while True:
            new_baozi = yield
            print("[%s] is eating baozi %s" % (name, new_baozi))
            time.sleep(1)
    def producer():
        r = con.__next__()
        r = con2.__next__()
        n = 0
        while n < 5:
            n += 1
            con.send(n)
            con2.send(n)
            print("33[32;1m[producer]33[0m is making baozi %s" % n)
    if __name__ == '__main__':
        con = consumer("c1")
        con2 = consumer("c2")
        p = producer()

    运行结果如下:

    注意:yeild并不能实现遇到io切换。

    对于单线程下,我们不可避免程序中出现io操作,但如果我们能在自己的程序中(即用户程序级别,而非操作系统级别)控制单线程下的多个任务能在一个任务遇到io阻塞时就切换到另外一个任务去计算,这样就保证了该线程能够最大限度地处于就绪态,即随时都可以被cpu执行的状态,相当于我们在用户程序级别将自己的io操作最大限度地隐藏起来,从而可以迷惑操作系统,让其看到:该线程好像是一直在计算,io比较少,从而更多的将cpu的执行权限分配给我们的线程。

    协程的本质就是在单线程下,由用户自己控制一个任务遇到io阻塞了就切换另外一个任务去执行,以此来提升效率。为了实现它,我们需要找寻一种可以同时满足以下条件的解决方案:

    #1. 可以控制多个任务之间的切换,切换之前将任务的状态保存下来,以便重新运行时,可以基于暂停的位置继续执行。
    
    #2. 作为1的补充:可以检测io操作,在遇到io操作的情况下才发生切换

    协程介绍

    协程:是单线程下的并发,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的。

    需要强调的是:

    #1. python的线程属于内核级别的,即由操作系统控制调度(如单线程遇到io或执行时间过长就会被迫交出cpu执行权限,切换其他线程运行)
    #2. 单线程内开启协程,一旦遇到io,就会从应用程序级别(而非操作系统)控制切换,以此来提升效率(!!!非io操作的切换与效率无关)

    对比操作系统控制线程的切换,用户在单线程内控制协程的切换

    优点如下:

    #1. 协程的切换开销更小,属于程序级别的切换,操作系统完全感知不到,因而更加轻量级
    #2. 单线程内就可以实现并发的效果,最大限度地利用cpu

    缺点如下:

    #1. 协程的本质是单线程下,无法利用多核,可以是一个程序开启多个进程,每个进程内开启多个线程,每个线程内开启协程
    #2. 协程指的是单个线程,因而一旦协程出现阻塞,将会阻塞整个线程

    总结协程特点:

    1. 必须在只有一个单线程里实现并发
    2. 修改共享数据不需加锁
    3. 用户程序里自己保存多个控制流的上下文栈
    4. 附加:一个协程遇到IO操作自动切换到其它协程(如何实现检测IO,yield、greenlet都无法实现,就用到了gevent模块(select机制)

    Greenlet模块(手动切换)

    使用yield关键字来实现协程,这种方式过于麻烦(需要先得到初始化一次的生成器,然后再调用send。。。非常麻烦),而使用greenlet模块可以非常简单地实现任务直接的切换。很多知名的网络并发框架如eventlet,gevent都是基于它实现的。

    from greenlet import greenlet
    
    def test1():
        print(12)
        gr2.switch()
        print(34)
    
    def test2():
        print(56)
        gr1.switch()
        print(78)
    
    gr1 = greenlet(test1)   #启动一个协程
    gr2 = greenlet(test2)   #启动另一个协程
    gr1.switch()    #先切换到gr1协程去执行test1函数

    运行结果:

    如上结果没有打印78,这是因为greenlet实现的协程切换是手动调用switch()来完成的。在执行完test1函数后,由于再没有”gr2.switch()”来切换至函数test2(),所以程序退出。

    greenlet只是提供了一种比generator更加便捷的切换方式,当切到一个任务执行时如果遇到io,那就原地阻塞,仍然是没有解决遇到IO自动切换来提升效率的问题。

    Gevent模块(自动切换)

    Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    #用法
    g1=gevent.spawn(func,1,,2,3,x=4,y=5)创建一个协程对象g1,spawn括号内第一个参数是函数名,如eat,后面可以有多个参数,可以是位置实参或关键字实参,都是传给函数eat的
    
    g2=gevent.spawn(func2)
    
    g1.join() #等待g1结束
    
    g2.join() #等待g2结束
    
    #或者上述两步合作一步:gevent.joinall([g1,g2])
    
    g1.value#拿到func1的返回值

    遇到IO阻塞时会自动切换任务

    import gevent
    
    def foo():
        print('Running in foo1')
        gevent.sleep(2)     #用来模拟gevent可以识别的io阻塞
        print('Running in foo2')
    
    def bar():
        print('Running in bar1')
        gevent.sleep(1)
        print('Running in bar2')
    
    def func3():
        print('Running in func1')
        gevent.sleep(0)     #这里不会阻塞,只是会做一次切换
        print('Running in func2')
    
    #等待所有协程执行结束
    gevent.joinall([
        gevent.spawn(foo),
        gevent.spawn(bar),
        gevent.spawn(func3),
    ])

    运行结果:

    用Gevent协程写一个简单并发爬网页

    from urllib import request
    import gevent,time
    
    def f(url):
        print("get:%s" %url)
        resp = request.urlopen(url)
        data = resp.read()
        print("%d bytes received from %s" %(len(data),url))
    
    
    urls = ["http://sina.com.cn",
            "http://www.cnblogs.com/",
            "https://news.cnblogs.com/"
    ]
    
    time_start = time.time()
    for url in urls:
        f(url)
    
    print("同步串行cost:",time.time()-time_start)
    
    async_time = time.time()
    gevent.joinall([
        gevent.spawn(f,"http://sina.com.cn"),
        gevent.spawn(f,"http://www.cnblogs.com/"),
        gevent.spawn(f,"https://news.cnblogs.com/")
    ])
    print("异步cost:",time.time()-async_time)

    运行结果如下:

    这里可以看出异步的时候和串行执行的时间基本一样,其实这里的异步并没有起作用,因为gevent并不能直接识别出time.sleep(2)或其他的阻塞,比如urllib执行时的IO操作等。需要用下面一行代码,打补丁,就可以识别了

    from gevent import monkey;monkey.patch_all()必须放到被打补丁者的前面,如time,socket模块之前

    或者我们干脆记忆成:要用gevent,需要将from gevent import monkey;monkey.patch_all()放到文件的开头

    将代码进行修改如下:

    from gevent import monkey;monkey.patch_all()
    
    from urllib import request
    import gevent,time
    
    def f(url):
        print("get:%s" %url)
        resp = request.urlopen(url)
        data = resp.read()
        print("%d bytes received from %s" %(len(data),url))
    
    
    urls = ["http://sina.com.cn",
            "http://www.cnblogs.com/",
            "https://news.cnblogs.com/"
    ]
    
    time_start = time.time()
    for url in urls:
        f(url)
    
    print("同步串行cost:",time.time()-time_start)
    
    async_time = time.time()
    gevent.joinall([
        gevent.spawn(f,"http://sina.com.cn"),
        gevent.spawn(f,"http://www.cnblogs.com/"),
        gevent.spawn(f,"https://news.cnblogs.com/")
    ])
    print("异步cost:",time.time()-async_time)

    运行结果:

    通过gevent实现单线程下的多socket并发

    from gevent import monkey;monkey.patch_all()
    import socket
    import gevent
    
    #如果不想用money.patch_all()打补丁,可以用gevent自带的socket
    # from gevent import socket
    # s=socket.socket()
    
    def server(port):
        s = socket.socket()
        s.bind(('0.0.0.0', port))
        s.listen(500)
        while True:
            conn, addr = s.accept()
            gevent.spawn(handle_request, conn,addr)
    
    def handle_request(conn,addr):
        try:
            while True:
                data = conn.recv(1024)
                print('client %s:%s msg: %s' % (addr[0], addr[1], data))
                conn.send(data.upper())
                if not data:
                    conn.shutdown(socket.SHUT_WR)
    
        except Exception as ex:
            print(ex)
        finally:
            conn.close()
    
    if __name__ == '__main__':
        server(8001)
    server
    import socket
    
    HOST = 'localhost'  # The remote host
    PORT = 8001  # The same port as used by the server
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect((HOST, PORT))
    while True:
        msg = bytes(input(">>:"), encoding="utf8")
        s.sendall(msg)
        data = s.recv(1024)
        # print(data)
    
        print('Received', repr(data))
    s.close()
    client
    import socket
    import threading
    
    def sock_conn():
    
        client = socket.socket()
    
        client.connect(("localhost",8001))
        count = 0
        while True:
            #msg = input(">>:").strip()
            #if len(msg) == 0:continue
            client.send(('%s say hello %s' %(threading.current_thread().getName(),count)).encode('utf-8'))
    
            data = client.recv(1024)
    
            print("[%s]recv from server:" % threading.get_ident(),data.decode()) #结果
            count +=1
        client.close()
    
    
    for i in range(100):
        t = threading.Thread(target=sock_conn)
        t.start()
    多线程并发多个客户端

    事件驱动

    通常,我们写服务器处理模型的程序时,有以下几种模型:
    (1)每收到一个请求,创建一个新的进程,来处理该请求;
    (2)每收到一个请求,创建一个新的线程,来处理该请求;
    (3)每收到一个请求,放入一个事件列表,让主进程通过非阻塞I/O方式来处理请求
    上面的几种方式,各有千秋,
    第(1)中方法,由于创建新的进程的开销比较大,所以,会导致服务器性能比较差,但实现比较简单。
    第(2)种方式,由于要涉及到线程的同步,有可能会面临死锁等问题。
    第(3)种方式,在写应用程序代码时,逻辑比前面两种都复杂。
    综合考虑各方面因素,一般普遍认为第(3)种方式是大多数网络服务器采用的方式
     

    事件驱动模型

    在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?
    方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点
    1. CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?
    2. 如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;
    3. 如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;
    所以,该方式是非常不好的。
    方式二:就是事件驱动模型
    目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:
    1. 有一个事件(消息)队列;
    2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
    3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
    4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

    事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。

    让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。

    在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

    在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

    在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

    当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

    1. 程序中有许多任务,而且…
    2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
    3. 在等待事件到来时,某些任务会阻塞。

    当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

    网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

    此处要提出一个问题,就是,上面的事件驱动模型中,只要一遇到IO就注册一个事件,然后主程序就可以继续干其它的事情了,只到io处理完毕后,继续恢复之前中断的任务,这本质上是怎么实现的呢?哈哈,下面我们就来一起揭开这神秘的面纱。。。。

    I/O多路复用

    概念说明:

    用户空间与内核空间

    现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。

    进程切换

    为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的。

    从一个进程的运行转到另一个进程上运行,这个过程中经过下面这些变化:
    1. 保存处理机上下文,包括程序计数器和其他寄存器。
    2. 更新PCB信息。

    3. 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
    4. 选择另一个进程执行,并更新其PCB。
    5. 更新内存管理的数据结构。
    6. 恢复处理机上下文。

    总而言之就是很耗资源。

    注:进程控制块(Processing Control Block),是操作系统核心中一种数据结构,主要表示进程状态。其作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位或与其它进程并发执行的进程。或者说,OS是根据PCB来对并发执行的进程进行控制和管理的。 PCB通常是系统内存占用区中的一个连续存区,它存放着操作系统用于描述进程情况及控制进程运行所需的全部信息 

    进程的阻塞

    正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得CPU),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的

    文件描述符fd

    文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。

    文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。

    缓存 I/O

    缓存 I/O 又被称作标准 I/O,大多数文件系统的默认 I/O 操作都是缓存 I/O。在 Linux 的缓存 I/O 机制中,操作系统会将 I/O 的数据缓存在文件系统的页缓存( page cache )中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。

    缓存 I/O 的缺点:
    数据在传输过程中需要在应用程序地址空间和内核进行多次数据拷贝操作,这些数据拷贝操作所带来的 CPU 以及内存开销是非常大的。

    IO模式

    刚才说了,对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:
    1. 等待数据准备 (Waiting for the data to be ready)
    2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

    正式因为这两个阶段,linux系统产生了下面五种网络模式的方案。
    - 阻塞 I/O(blocking IO)
    - 非阻塞 I/O(nonblocking IO)
    - I/O 多路复用( IO multiplexing)
    - 信号驱动 I/O( signal driven IO)
    - 异步 I/O(asynchronous IO)

    注:由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

    阻塞 I/O(blocking IO)

    在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

    当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据(对于网络IO来说,很多时候数据在一开始还没有到达。比如,还没有收到一个完整的UDP包。这个时候kernel就要等待足够的数据到来)。这个过程需要等待,也就是说数据被拷贝到操作系统内核的缓冲区中是需要一个过程的。而在用户进程这边,整个进程会被阻塞(当然,是进程自己选择的阻塞)。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。

    所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

    非阻塞 I/O(nonblocking IO)

    linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

    当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。

    所以,nonblocking IO的特点是用户进程需要不断的主动询问kernel数据好了没有。

    I/O 多路复用( IO multiplexing)

    IO multiplexing就是我们说的select,poll,epoll,有些地方也称这种IO方式为event driven IO。select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select,poll,epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。

    当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

    所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪状态,select()函数就可以返回。

    这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。

    所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)

    在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

    异步 I/O(asynchronous IO)

    inux下的asynchronous IO其实用得很少。先看一下它的流程:

    用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

    IO多路复用之select、poll、epoll

    select,poll,epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。

    select

    sekect是通过一个select()系统调用来监视多个文件描述符,当select()返回后,该数组中就绪的文件描述符便会被该内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作

    select的优点就是支持跨平台

    缺点在于单个进程能够监视的文件描述符的数量存在最大限制

    另外select()所维护的存储大量文件描述符的数据结构,随着文件描述符数量的增大,其复制的开销也线性增长。同时,由于网络响应时间的延迟使得大量TCP连接处于非活跃状态,但调用select()会对所有socket进行一次线性扫描,所以这也浪费了一定的开销。

    poll

    和select在本质上没有多大差别,但是poll没有最大文件描述符数量的限制

    poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。

    另外,select()和poll()将就绪的文件描述符告诉进程后,如果进程没有对其进行IO操作,那么下次调用select()和poll()的时候将再次报告这些文件描述符,所以它们一般不会丢失就绪的消息,这种方式称为水平触发(Level Triggered)。

    epoll

    epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。

    epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。

    另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知

    以select方法为例子进行理解

    Python的select()方法直接调用操作系统的IO接口,它监控sockets,open files, and pipes(所有带fileno()方法的文件句柄)何时变成readable 和writeable, 或者通信错误,select()使得同时监控多个连接变的简单,并且这比写一个长循环来等待和监控多客户端连接要高效,因为select直接通过操作系统提供的C的网络接口进行操作,而不是通过Python的解释器。

    接下来通过echo server例子要以了解select 是如何通过单进程实现同时处理多个非阻塞的socket连接的,如下

    import socket
    import select
    import queue
    
    server_addr = ('localhost',9990)
    server = socket.socket()
    server.setblocking(False)   #设置成不阻塞模式
    
    print('starting up on %s port %s' % server_addr)
    server.bind(server_addr)
    
    server.listen()
    
    inputs = [server, ]     #自己也要监测呀,因为server本身也是个fd
    outputs = []
    
    message_queues = {}
    
    while True:
        print("waiting for next event...")
        readable, writeable, exceptional = select.select(inputs, outputs, inputs)   #如果没有任何fd就绪,那程序就会一直阻塞在这里
    
        for s in readable:      #每个s就是一个socket
            if s is server:     #别忘记,上面我们server自己也当做一个fd放在了inputs列表里,传给了select,如果这个s是server,代表server这个fd就绪了,就是有活动了, 什么情况下它才有活动? 当然 是有新连接进来的时候 呀
    
                # 新连接进来了,接受这个连接
                conn, addr = s.accept()
                print("new connection from", addr)
                conn.setblocking(False)
                inputs.append(conn)     #为了不阻塞整个程序,我们不会立刻在这里开始接收客户端发来的数据, 把它放到inputs里, 下一次loop时,这个新连接 
                #就会被交给select去监听,如果这个连接的客户端发来了数据 ,那这个连接的fd在server端就会变成就续的,select就会把这个连接返回,返回到 
                #readable 列表里,然后你就可以loop readable列表,取出这个连接,开始接收数据了, 下面就是这么干 的
    
                message_queues[conn] = queue.Queue()  # 接收到客户端的数据后,不立刻返回 ,暂存在队列里,以后发送
            else:   #s不是server的话,那就只能是一个 与客户端建立的连接的fd了
                # 客户端的数据过来了,在这接收
                data = s.recv(1024)
                if data:
                    print("收到来自[%s]的数据:" % s.getpeername()[0], data)
                    message_queues[s].put(data)  # 收到的数据先放到queue里,一会返回给客户端
                    if s not in outputs:
                        outputs.append(s)  # 为了不影响处理与其它客户端的连接 , 这里不立刻返回数据给客户端
    
                else:   #如果收不到data代表什么呢? 代表客户端断开了呀
                    print("客户端断开了", s)
    
                    if s in outputs:
                        outputs.remove(s)  # 清理已断开的连接
    
                    inputs.remove(s)  # 清理已断开的连接
    
                    del message_queues[s]  ##清理已断开的连接
    
        for s in writeable:
            try:
                next_msg = message_queues[s].get_nowait()
    
            except queue.Empty:
                print("client [%s]" % s.getpeername()[0], "queue is empty..")
                outputs.remove(s)
    
            else:
                print("sending msg to [%s]" % s.getpeername()[0], next_msg)
                s.send(next_msg.upper())
    
        for s in exceptional:
            print("handling exception for ", s.getpeername())
            inputs.remove(s)
            if s in outputs:
                outputs.remove(s)
            s.close()
    
            del message_queues[s]
    select socket server
    import socket
    import sys
    
    HOST, PORT = "localhost", 9990
    
    client = socket.socket()
    client.connect((HOST,PORT))
    
    while True:
        msg = input('>>:').strip()
        if not msg:continue
        client.send(msg.encode())
    
        msg_ack = client.recv(1024)
        print(msg_ack.decode())
    select socket client

    其实上述的代码相对来说是比较麻烦,python已经封装了selectors模块,并且这个模块中包含了select和epoll,会根据系统自动识别(windows只支持select,linux是二者都支持),默认用epoll

    如果将上述代码用selectors模块的方式写,代码如下:

    import selectors
    import socket
    
    sel = selectors.DefaultSelector()
    
    
    def accept(sock, mask):
        conn, addr = sock.accept()  # Should be ready
        print('accepted', conn, 'from', addr)
        conn.setblocking(False)
        sel.register(conn, selectors.EVENT_READ, read)      #新连接注册read回调函数
    
    
    def read(conn, mask):
        data = conn.recv(1000)  # Should be ready
        if data:
            print('echoing', repr(data), 'to', conn)
            conn.send(data)  # Hope it won't block
        else:
            print('closing', conn)
            sel.unregister(conn)
            conn.close()
    
    
    sock = socket.socket()
    sock.bind(('localhost', 9998))
    sock.listen()
    sock.setblocking(False)
    sel.register(sock, selectors.EVENT_READ, accept)
    
    while True:
        events = sel.select()   #默认阻塞,有活动连接就返回活动的连接列表
        for key, mask in events:
            callback = key.data     #这里就是回调函数及上述的accept
            callback(key.fileobj, mask)

    我们用客户端模拟同时并发一万去连接服务端

    客户端代码如下:

    import socket
    import sys
    
    messages = [ b'This is the message. ',
                 b'It will be sent ',
                 b'in parts.',
                 ]
    server_address = ('192.168.189.136', 9998)
    socks = [ socket.socket(socket.AF_INET, socket.SOCK_STREAM) for i in range(10000)
              ]
    print('connecting to %s port %s' % server_address)
    for s in socks:
        s.connect(server_address)
    
    for message in messages:
        for s in socks:
            print('%s: sending "%s"' % (s.getsockname(), message) )
            s.send(message)
        for s in socks:
            data = s.recv(1024)
            print( '%s: received "%s"' % (s.getsockname(), data) )
            if not data:
                print(sys.stderr, 'closing socket', s.getsockname() )

    将服务端放到linux服务端,在本机执行客户端,从而实现了上万的并发

  • 相关阅读:
    python基础之流程控制
    多线程---阻塞队列
    多线程---线程同步
    多线程---线程实现
    多线程start();之后会开辟新的栈空间
    java中使用String的split分隔字符串注意事项
    IO流
    java中的多态
    关于java中的接口
    关于final关键字
  • 原文地址:https://www.cnblogs.com/cyfiy/p/9259200.html
Copyright © 2020-2023  润新知