• 「ZJOI2019」Minimax 搜索(动态dp)


    Address

    loj3044

    Solution

    考虑对 \(k\in [l-1,r]\) 分别求出有多少个集合 \(S\) 满足 \(w(S)\le k\),记作 \(ans_k\)

    先求出 \(1\) 的初始权值 \(W\)

    \(val(x)\) 表示 \(x\) 的权值。枚举 \(k\),现在对于每个叶子 \(u\),如果 \(u\in S\),那么 \(val(u)\in [u-W,u+W]\),否则 \(val(u)=W\)

    我们发现,把叶子节点的权值改成 \(W\) 肯定是不优的。所以改动一些叶子后,如果 \(val(1)\) 还是 \(W\),那么肯定路径 \(1→W\) 上每个点的权值都是 \(W\),且其它的点的权值都不是 \(W\)

    因此,如果想要 \(val(1)\) 改变,那么路径 \(1→W\) 上肯定存在一个点 \(x\)\(val(x)\ne W\)。记 \(x\) 在路径 \(1→W\) 上的子节点为 \(y\)。如果 \(x\) 深度是奇数, 那么肯定存在一个 \(x\) 的子节点 \(z(z\ne y)\)\(val(z)>W\)\(x\) 深度是偶数时同理。

    我们把 \(1→W\) 上的边全部断掉,再求一遍每个点的权值。如果原路径 \(1→W\) 上存在某个深度为奇数的点的权值 \(>W\),或者某个深度为偶数的点的权值 \(<W\),那么 \(val(1)\) 肯定改变,否则肯定不变。

    \(f(u)\) 表示 \(u\) 子树中,使 \(val(u)>w\) 的合法叶子节点集合有几个。\(g(u)\) 表示 \(u\) 子树中,使 \(val(u)<w\) 的合法叶子节点集合有几个。

    如果 \(u\) 是叶子节点:\(f(u)=[u>W]+[u+k>W],g(u)=[u<W]+[u-k<W]\)。其中 \([u>W],[u<W]\) 表示 \(u\) 不在叶子节点集合内,\([u+k>W],[u-k<W]\) 表示在集合内。

    如果 \(u\) 是深度为奇数的非叶子节点,如果 \(val(u)>W\),那么 \(u\) 的子节点最大权值必须 \(>W\),也就是说不能全部 \(\le W\)。因此 \(f(u)=2^{cnt_u}\prod_{v\in son_u}(2^{cnt_v}-f(v))\)。其中 \(cnt_u\) 表示 \(u\) 的子树内有几个叶子节点。

    如果 \(u\) 是深度为偶数的非叶子节点,如果 \(val(u)>W\),那么 \(u\) 的子节点全部 \(<W\)。因此 \(f(u)=\prod_{v\in son_u}f(v)\)

    \(g\) 的转移和 \(f\) 类似。

    接下来求 \(ans_k\)。考虑补集转化,即用 \(2^{cnt_1}\) 减去不会让 \(val(1)\) 改变的集合数。不会让 \(val(1)\) 改变,就是要让原路径 \(1→W\) 上的每个点的权值都不变。那么把深度为奇数的 \(2^{cnt_x}-f_x\) 和深度为偶数的 \(2^{cnt_x}-g_x\) 全部相乘就是答案了。

    至此,我们得到了一个 \(O(n(R-L))\) 的做法。

    考虑优化,我们发现转移与 \(k\) 无关,只有叶子节点的 \(f,g\)\(k\) 有关。进一步地,我们发现随着 \(k\) 变大,每个叶子节点的 \(f,g\) 最多改变一次。因此可以看作是 \(O(n)\) 次修改的动态 \(dp\),时间复杂度 \(O(n\log^2 n)\)

    Code

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define ll long long
    #define p2 p << 1
    #define p3 p << 1 | 1
    
    template <class t>
    inline void read(t & res)
    {
        char ch;
        while (ch = getchar(), !isdigit(ch));
        res = ch ^ 48;
        while (ch = getchar(), isdigit(ch))
        res = res * 10 + (ch ^ 48);
    }
    
    template <class t>
    inline void print(t x)
    {
        if (x > 9) print(x / 10);
        putchar(x % 10 + 48);
    }
    
    const int e = 2e5 + 5, mod = 998244353;
    
    struct point
    {
        int x, y;
    }b[e], que[e];
    struct matrix
    {
        int a, b;
        
        matrix(){}
        matrix(int _a, int _b) :
            a(_a), b(_b) {}
    }tr[e << 2];
    vector<int>g[e], c[e], d[e];
    int f[e], dep[e], L, R, w, n, fa[e], a[e], m, nxt[e], go[e], adj[e], val[e], K, cnt[e], f2[e];
    int q[e], h[e], num, all, sum[e << 2], son[e], sze[e], dfnA[e], dfnB[e], timA, timB, idA[e], idB[e];
    int st[e], ed[e], bot[e], top[e], ans[e], rt[e], now_rt;
    bool is[e], op, bo[e];
    
    inline void add(int &x, int y)
    {
        (x += y) >= mod && (x -= mod);
    }
    
    inline void del(int &x, int y)
    {
        (x -= y) < 0 && (x += mod);
    }
    
    inline int plu(int x, int y)
    {
        add(x, y);
        return x;
    }
    
    inline int sub(int x, int y)
    {
        del(x, y);
        return x;
    }
    
    inline int mul(int x, int y)
    {
        return (ll)x * y % mod;
    }
    
    inline int ksm(int x, int y)
    {
        int res = 1;
        while (y)
        {
            if (y & 1) res = mul(res, x);
            y >>= 1;
            x = mul(x, x);
        }
        return res;
    }
    
    inline matrix operator + (matrix u, matrix v)
    {
        return matrix(mul(u.a, v.a), plu(mul(u.b, v.a), v.b));
    }
    
    inline void link1(int x, int y)
    {
        g[x].push_back(y);
        g[y].push_back(x);
    }
    
    inline void link2(int x, int y)
    {
        nxt[++num] = adj[x]; adj[x] = num; go[num] = y;
    }
    
    inline void dfs1(int u, int pa)
    {
        dep[u] = dep[pa] + 1;
        fa[u] = pa;
        if (dep[u] & 1) val[u] = 0;
        else val[u] = n + 1;
        int len = g[u].size(), i;
        bool pd = 0;
        for (i = 0; i < len; i++)
        {
            int v = g[u][i];
            if (v == pa) continue;
            pd = 1;
            dfs1(v, u);
            if (dep[u] & 1) val[u] = max(val[u], val[v]);
            else val[u] = min(val[u], val[v]);
        }
        if (!pd) val[u] = u, all++;   
    }
    
    inline void dfs2(int u)
    {
        if (val[u] == u)
        {
            if (op) 
            {
                f[u] = (u > w) + (u + K > w);
                if (L <= w + 1 - u && w + 1 - u <= R) c[w + 1 - u].push_back(u);
            }
            else 
            {
                f[u] = (u < w) + (u - K < w);
                if (L <= u + 1 - w && u + 1 - w <= R) d[u + 1 - w].push_back(u);
            }
            return;
        }
        f[u] = f2[u] = 1;
        bool fl = ((dep[u] & 1) && op) || ((~dep[u] & 1) && !op);
        bo[u] = fl;
        for (int i = adj[u]; i; i = nxt[i])
        {
            int v = go[i];
            dfs2(v);
            if (fl) f[u] = mul(f[u], sub(q[v], f[v]));
            else f[u] = mul(f[u], f[v]);
            if (v != son[u])
            {
                if (fl) f2[u] = mul(f2[u], sub(q[v], f[v]));
                else f2[u] = mul(f2[u], f[v]);
            }
        }
        if (fl) f[u] = sub(q[u], f[u]);
    }
    
    inline void dfs3(int u)
    {
        if (val[u] == u) cnt[u] = 1;
        sze[u] = 1;
        rt[u] = now_rt;
        for (int i = adj[u]; i; i = nxt[i])
        {
            int v = go[i];
            dfs3(v);
            cnt[u] += cnt[v];
            sze[u] += sze[v];
            if (sze[v] > sze[son[u]]) son[u] = v;
        }
    }
    
    inline void dfs4(int u, int fi)
    {
        top[u] = fi;
        dfnA[u] = ++timA;
        idA[timA] = u;
        if (son[u]) 
        {
            dfs4(son[u], fi);
            st[u] = timB + 1;
            for (int i = adj[u]; i; i = nxt[i])
            {
                int v = go[i];
                if (v == son[u]) continue;
                dfnB[v] = ++timB;
                idB[timB] = v;
            }
            ed[u] = timB;
        }
        for (int i = adj[u]; i; i = nxt[i])
        {
            int v = go[i];
            if (v == son[u]) continue;
            dfs4(v, v);
        }
        if (son[u]) bot[u] = bot[son[u]];
        else bot[u] = u;
    }
    
    inline void build(int l, int r, int p)
    {
        if (l == r)
        {
            int u = idA[l], v = idB[l];
            if (son[u])
            {
                if (bo[u])
                {
                    int v = son[u];
                    tr[p] = matrix(f2[u], sub(q[u], mul(f2[u], q[v])));
                }
                else tr[p] = matrix(f2[u], 0);
            }
            if (v)
            {
                int pa = fa[v];
                if (bo[pa]) sum[p] = sub(q[v], f[v]);
                else sum[p] = f[v];
            }
            return;
        }
        int mid = l + r >> 1;
        build(l, mid, p2);
        build(mid + 1, r, p3);
        tr[p] = tr[p3] + tr[p2];
        sum[p] = mul(sum[p2], sum[p3]);
    }
    
    inline void upt_tr(int l, int r, int s, matrix u, int p)
    {
        if (l == r)
        {
            tr[p] = u;
            return;
        }
        int mid = l + r >> 1;
        if (s <= mid) upt_tr(l, mid, s, u, p2);
        else upt_tr(mid + 1, r, s, u, p3);
        tr[p] = tr[p3] + tr[p2];
    }
    
    inline void upt_sum(int l, int r, int s, int v, int p)
    {
        if (l == r)
        {
            sum[p] = v;
            return;
        }
        int mid = l + r >> 1;
        if (s <= mid) upt_sum(l, mid, s, v, p2);
        else upt_sum(mid + 1, r, s, v, p3);
        sum[p] = mul(sum[p2], sum[p3]);
    }
    
    inline matrix ask_tr(int l, int r, int s, int t, int p)
    {
        if (l == s && r == t) return tr[p];
        int mid = l + r >> 1;
        if (t <= mid) return ask_tr(l, mid, s, t, p2);
        else if (s > mid) return ask_tr(mid + 1, r, s, t, p3);
        else return ask_tr(mid + 1, r, mid + 1, t, p3) + ask_tr(l, mid, s, mid, p2);
    }
    
    inline int ask_sum(int l, int r, int s, int t, int p)
    {
        if (l == s && r == t) return sum[p];
        int mid = l + r >> 1;
        if (t <= mid) return ask_sum(l, mid, s, t, p2);
        else if (s > mid) return ask_sum(mid + 1, r, s, t, p3);
        else return mul(ask_sum(l, mid, s, mid, p2), ask_sum(mid + 1, r, mid + 1, t, p3));
    }
    
    inline void pair_mul(point &u, int x)
    {
        if (!x) u.y++;
        else u.x = mul(u.x, x);
    }
    
    inline void pair_div(point &u, int x)
    {
        if (!x) u.y--;
        else u.x = mul(u.x, ksm(x, mod - 2));
    }
    
    inline void cover(int &x, point u)
    {
        int res = u.x;
        if (u.y) res = 0;
        x = sub(all, res);
    }
    
    inline int calc(int x, matrix c)
    {
        return plu(mul(x, c.a), c.b);
    }
    
    inline int ask(int x)
    {
        if (x == bot[x]) return f[x];
        int l = dfnA[x], r = dfnA[bot[x]] - 1;
        return calc(f[bot[x]], ask_tr(1, n, l, r, 1));
    }
    
    inline void change(int x)
    {
        pair_div(que[K], sub(q[rt[x]], f[rt[x]]));
        x = top[x];
        while (x)
        {
            f[x] = ask(x);
            if (!fa[x]) break;
            int y = fa[x];
            if (bo[y]) upt_sum(1, n, dfnB[x], sub(q[x], f[x]), 1);
            else upt_sum(1, n, dfnB[x], f[x], 1);
            f2[y] = ask_sum(1, n, st[y], ed[y], 1);
            
            matrix tmp;
            if (bo[y])
            {
                int v = son[y];
                tmp = matrix(f2[y], sub(q[y], mul(f2[y], q[v])));
            }
            else tmp = matrix(f2[y], 0);
            upt_tr(1, n, dfnA[y], tmp, 1);
            
            x = top[y];
        }
        pair_mul(que[K], sub(q[x], f[x]));
    }
    
    int main()
    {
        freopen("minimax.in", "r", stdin);
        freopen("minimax.out", "w", stdout);
        read(n); read(L); read(R);
        int i, x, y, j;
        for (i = 1; i < n; i++) read(x), read(y), link1(x, y), b[i].x = x, b[i].y = y;
        dfs1(1, 0);
        x = w = val[1];
        h[0] = 1;
        for (i = 1; i <= n; i++) h[i] = plu(h[i - 1], h[i - 1]);
        while (x != 1)
        {
            a[++m] = x;
            x = fa[x];
        }
        a[++m] = 1;
        reverse(a + 1, a + m + 1);
        for (i = 1; i <= m; i++) is[a[i]] = 1;
        for (i = 1; i < n; i++)
        {
            x = b[i].x; y = b[i].y;
            if (!is[x] || !is[y])
            {
                if (fa[x] == y) link2(y, x);
                else link2(x, y);
            }
        }
        for (i = 1; i <= m; i++) now_rt = a[i], dfs3(a[i]);
        all = h[all];
        for (i = 1; i <= n; i++) q[i] = h[cnt[i]];
        for (i = 1; i <= m; i++) dfs4(a[i], a[i]), fa[a[i]] = 0;
        
        bool flag = 0;
        if (L == 1) K = L, flag = 1, L++;
        else K = L - 1;
        que[K].x = 1;
        for (j = 1; j <= m; j++) 
        {
            int u = a[j];
            op = j & 1; dfs2(u);
            pair_mul(que[K], sub(q[u], f[u]));
        }
        cover(ans[K], que[K]);
        build(1, n, 1);
        for (i = L; i <= R; i++)
        {
            que[i] = que[i - 1];
            K = i;
            int lenc = c[i].size(), lend = d[i].size();
            for (j = 0; j < lenc; j++)
            {
                int u = c[i][j];
                f[u] = (u > w) + (u + K > w);
                change(u);
            }
            for (j = 0; j < lend; j++)
            {
                int u = d[i][j];
                f[u] = (u < w) + (u - K < w);
                change(u);
            }
            if (i == n)
            {
                ans[i] = sub(all, 1);
                continue;
            }
            cover(ans[i], que[i]);
        }
        if (flag) L--;
        for (i = L; i <= R; i++) 
        print(sub(ans[i], ans[i - 1])), putchar(i == R ? '\n' : ' ');
        return 0;
    }
    
  • 相关阅读:
    信息系统开发平台OpenExpressApp - 支持列表分组(Group)
    WPF - 轻量级的开源XAML编辑器Kaxaml
    工作流 - 架构描述
    工作流 - 技术备忘录
    开源 - 轻型的表达式引擎 Flee
    敏捷实践(收集)
    人生就是......
    信息系统开发平台OpenExpressApp - 应用模型ApplicationModel
    软件观点 - 平台分类:系统平台、开发平台和开放平台
    软件产品线工程方法 - BAPO之架构(Architecture)
  • 原文地址:https://www.cnblogs.com/cyf32768/p/12296954.html
Copyright © 2020-2023  润新知