• Poj 3552 Slim Span 最小生成树


    -----------------

    Slim Span
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 5725   Accepted: 3008

    Description

    Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

    The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

    A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


    Figure 5: A graph G and the weights of the edges

    For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


    Figure 6: Examples of the spanning trees of G

    There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

    Your job is to write a program that computes the smallest slimness.

    Input

    The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

    n m  
    a1 b1 w1
       
    am bm wm

    Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

    Output

    For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

    Sample Input

    4 5
    1 2 3
    1 3 5
    1 4 6
    2 4 6
    3 4 7
    4 6
    1 2 10
    1 3 100
    1 4 90
    2 3 20
    2 4 80
    3 4 40
    2 1
    1 2 1
    3 0
    3 1
    1 2 1
    3 3
    1 2 2
    2 3 5
    1 3 6
    5 10
    1 2 110
    1 3 120
    1 4 130
    1 5 120
    2 3 110
    2 4 120
    2 5 130
    3 4 120
    3 5 110
    4 5 120
    5 10
    1 2 9384
    1 3 887
    1 4 2778
    1 5 6916
    2 3 7794
    2 4 8336
    2 5 5387
    3 4 493
    3 5 6650
    4 5 1422
    5 8
    1 2 1
    2 3 100
    3 4 100
    4 5 100
    1 5 50
    2 5 50
    3 5 50
    4 1 150
    0 0

    Sample Output

    1
    20
    0
    -1
    -1
    1
    0
    1686
    50

    Source




    -----------------

    将边按权值排序。

    枚举最小边,从最小边开始做Kruskal。

    -----------------

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    
    using namespace std;
    
    const int maxn=1111;
    const int maxm=11111;
    const int INF=0x3f3f3f3f;
    
    class DisjointSet{
    private:
        int pa[maxn];
        int n;
    public:
        void makeSet(int n){
            this->n=n;
            for (int i=0;i<=n;i++) pa[i]=i;
        }
        int findSet(int x){
            if (x!=pa[x]) pa[x]=findSet(pa[x]);
            return pa[x];
        }
        void unionSet(int x,int y){
            x=findSet(x);
            y=findSet(y);
            if (x!=y) pa[x]=y;
        }
    }disjointSet;
    
    struct Edge{
        int u,v;
        int w;
        Edge(){}
        Edge(int u,int v,int w){
            this->u=u;
            this->v=v;
            this->w=w;
        }
        bool operator<(const Edge& rhs) const{
            return w<rhs.w;
        }
    };
    int n,m;
    Edge vec[maxm];
    
    int Kruskal(int s){
        int minCost=INF;
        int maxCost=-1;
        int cnt=0;
        disjointSet.makeSet(n);
        for (int i=s;i<m;i++){
            int u=vec[i].u;
            int v=vec[i].v;
            int w=vec[i].w;
            if (disjointSet.findSet(u)!=disjointSet.findSet(v)){
                disjointSet.unionSet(u,v);
                cnt++;
                minCost=min(minCost,w);
                maxCost=max(maxCost,w);
            }
        }
        if (cnt!=n-1) return INF;
        if (cnt==1) return 0;
        return maxCost-minCost;
    }
    
    int main()
    {
        while (~scanf("%d%d",&n,&m)){
            if (n==0&&m==0) break;
            for (int i=0;i<m;i++){
                scanf("%d%d%d",&vec[i].u,&vec[i].v,&vec[i].w);
            }
            sort(vec,vec+m);
            int ans=INF;
            for (int i=0;i<m;i++){
                ans=min(ans,Kruskal(i));
            }
            if (ans==INF) printf("-1
    ");
            else printf("%d
    ",ans);
        }
        return 0;
    }
    




    -----------------

  • 相关阅读:
    光电缆线路安防综合监控网管运维方案
    5G时代 微波通信网络运维管理系统实施方案
    IT运维管理之NETCONF工具
    新基建 破局大规模数据中心智能化监控运维管理
    智慧工厂工业交换机网络运维管理系统
    智慧轨道交通云联网安防运维集成化管理系统应用方案
    智和网管平台SugarNMS万能命令工具 赋能IT智能运维
    智慧城市综合运维安防监控管理系统方案
    SugarNMS可视化智能运维 赋能数据中心安全管控
    下载时,经常看见ASC、MD5、SHA1等,是干什么的呢?
  • 原文地址:https://www.cnblogs.com/cyendra/p/3681571.html
Copyright © 2020-2023  润新知