#include <iostream> using namespace std; const int OO=1e9;//无穷大 const int maxm=111111;//边的最大数量,为原图的两倍 const int maxn=999;//点的最大数量 int node,src,dest,edge;//node节点数,src源点,dest汇点,edge边数 int head[maxn],work[maxn],dis[maxn],q[maxn];//head链表头,work临时表头,dis计算距离 struct edgenode{ int to;//边的指向 int flow;//边的容量 int next;//链表的下一条边 }edges[maxm]; //初始化链表及图的信息 void prepare(int _node,int _src,int _dest) { node=_node; src=_src; dest=_dest; for (int i=0;i<node;i++) head[i]=-1; edge=0; } //添加一条从u到v容量为c的边 void addedge(int u,int v,int c) { edges[edge].flow=c;edges[edge].to=v;edges[edge].next=head[u];head[u]=edge++; edges[edge].flow=0;edges[edge].to=u;edges[edge].next=head[v];head[v]=edge++; } //广搜计算出每个点与源点的最短距离,如果不能到达汇点说明算法结束 bool Dinic_bfs() { int u,v,r=0; for (int i=0;i<node;i++) dis[i]=-1; q[r++]=src; dis[src]=0; for (int l=0;l<r;l++) { u=q[l]; for (int i=head[u];i!=-1;i=edges[i].next) { v=edges[i].to; if (edges[i].flow&&dis[v]<0) {//这条边必须要有剩余流量 q[r++]=v; dis[v]=dis[u]+1; if (v==dest) return true; } } } return false; } //寻找可行流的增广路算法,按节点的距离来找,加快速度 int Dinic_dfs(int u,int exp) { int v,tmp; if (u==dest) return exp; //work是临时链表头,这里用 i引用它,这样寻找过的边不再寻找 for (int &i=work[u];i!=-1;i=edges[i].next) { v=edges[i].to; if (edges[i].flow&&dis[v]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,edges[i].flow)))>0) { edges[i].flow-=tmp; edges[i^1].flow+=tmp; //正反向边容量改变 return tmp; } } return 0; } //求最大流直到没有可行流 int Dinic_flow() { int ret=0,tmp; while (Dinic_bfs()) { for (int i=0;i<node;i++) work[i]=head[i]; while ( tmp=Dinic_dfs(src,OO) ) ret+=tmp; } return ret; } int main() { int n,m,u,c,v; while (cin>>n>>m) { prepare(m+1,1,m); while (n--) { cin>>u>>v>>c; addedge(u,v,c); } cout<<Dinic_flow()<<endl; } return 0; }