Description
Fat brother and Maze are playing a kind of special (hentai) game on an N*M board (N rows, M columns). At the beginning, each grid of this board is consisting of grass or just empty and then they start to fire all the grass. Firstly they choose two grids which are consisting of grass and set fire. As we all know, the fire can spread among the grass. If the grid (x, y) is firing at time t, the grid which is adjacent to this grid will fire at time t+1 which refers to the grid (x+1, y), (x-1, y), (x, y+1), (x, y-1). This process ends when no new grid get fire. If then all the grid which are consisting of grass is get fired, Fat brother and Maze will stand in the middle of the grid and playing a MORE special (hentai) game. (Maybe it’s the OOXX game which decrypted in the last problem, who knows.)
You can assume that the grass in the board would never burn out and the empty grid would never get fire.
Note that the two grids they choose can be the same.
Input
The first line of the date is an integer T, which is the number of the text cases.
Then T cases follow, each case contains two integers N and M indicate the size of the board. Then goes N line, each line with M character shows the board. “#” Indicates the grass. You can assume that there is at least one grid which is consisting of grass in the board.
1 <= T <=100, 1 <= n <=10, 1 <= m <=10
Output
For each case, output the case number first, if they can play the MORE special (hentai) game (fire all the grass), output the minimal time they need to wait after they set fire, otherwise just output -1. See the sample input and output for more details.
Sample Input
Sample Output
1 #include <stdio.h> 2 #include <string.h> 3 #include <queue> 4 #include <algorithm> 5 using namespace std; 6 7 const int inf=0x3f3f3f3f; 8 9 int T,ca=1; 10 int n,m; 11 char mapp[12][12]; 12 int num[12][12],s1,s2,s,d[12][12],sum; 13 int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1}; 14 15 struct Node 16 { 17 int r; 18 int c; 19 }; 20 21 int dfs(int x,int y) 22 { 23 int i,j; 24 num[x][y]=s; 25 for(i=0;i<4;i++) 26 { 27 int nx=x+dx[i],ny=y+dy[i]; 28 if(1<=nx && nx<=n && 1<=ny && ny<=m && mapp[nx][ny]=='#' && num[nx][ny]==0) 29 { 30 dfs(nx,ny); 31 } 32 } 33 } 34 35 queue <Node> que; 36 int bfs() 37 { 38 int i,j,k; 39 while(que.size()) 40 { 41 Node now=que.front();que.pop(); 42 43 for(i=0;i<4;i++) 44 { 45 int nx=now.r+dx[i],ny=now.c+dy[i]; 46 if(1<=nx && nx<=n && 1<=ny && ny<=m && mapp[nx][ny]=='#' && d[nx][ny]==inf) 47 { 48 Node nex; 49 nex.r=nx,nex.c=ny; 50 que.push(nex); 51 d[nx][ny]=d[now.r][now.c]+1; 52 if(d[nx][ny]>sum) 53 sum=d[nx][ny]; 54 } 55 } 56 } 57 } 58 59 int main() 60 { 61 int i,j,k,ii,jj; 62 scanf("%d",&T); 63 while(T--) 64 { 65 s=0; 66 memset(num,0,sizeof(num)); 67 scanf("%d %d",&n,&m); 68 getchar(); 69 for(i=1;i<=n;i++) 70 { 71 for(j=1;j<=m;j++) 72 { 73 scanf("%c",&mapp[i][j]); 74 } 75 getchar(); 76 } 77 for(i=1;i<=n;i++) 78 { 79 for(j=1;j<=m;j++) 80 { 81 if(mapp[i][j]=='#' && num[i][j]==0) 82 { 83 s++; 84 dfs(i,j); 85 } 86 } 87 } 88 89 if(s>2) 90 { 91 printf("Case %d: -1 ",ca++); 92 } 93 else if(s==2) 94 { 95 s1=inf,s2=inf; 96 for(i=1;i<=n;i++) 97 { 98 for(j=1;j<=m;j++) 99 { 100 if(mapp[i][j]=='#') 101 { 102 memset(d,inf,sizeof(d)); 103 while(que.size()) 104 que.pop(); 105 Node begin; 106 begin.r=i,begin.c=j; 107 que.push(begin); 108 d[i][j]=0; 109 sum=0; 110 bfs(); 111 112 if(num[i][j]==1 && sum<s1) 113 { 114 s1=sum; 115 } 116 if(num[i][j]==2 && sum<s2) 117 { 118 s2=sum; 119 } 120 } 121 } 122 } 123 printf("Case %d: %d ",ca++,max(s1,s2)); 124 } 125 else if(s==1) 126 { 127 int ss=inf; 128 for(i=1;i<=n;i++) 129 for(j=1;j<=m;j++) 130 { 131 if(mapp[i][j]=='#') 132 { 133 for(ii=1;ii<=n;ii++) 134 for(jj=1;jj<=m;jj++) 135 { 136 if(mapp[ii][jj]=='#') 137 { 138 memset(d,inf,sizeof(d)); 139 while(que.size()) 140 que.pop(); 141 Node begin; 142 begin.r=i,begin.c=j; 143 que.push(begin); 144 d[i][j]=0; 145 begin.r=ii,begin.c=jj; 146 que.push(begin); 147 d[ii][jj]=0; 148 sum=0; 149 bfs(); 150 if(sum<ss) 151 ss=sum; 152 } 153 } 154 } 155 } 156 printf("Case %d: %d ",ca++,ss); 157 } 158 else if(s==0) 159 printf("Case %d: 0 ",ca++); 160 } 161 return 0; 162 }