• Luogu1070-道路游戏-动态规划


    Solution

    用对角线的前缀和快速进行转移,复杂度$O(N^3)$, 洛谷神机太快了$N^3$都能过

    然而正解是单调队列优化, 能优化到$O(N^2)$,然而我弱得什么都不会

    Code

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #define rd read()
     5 #define rep(i,a,b) for(register int i = (a); i <= (b); ++i)
     6 #define per(i,a,b) for(register int i = (a); i >= (b); --i)
     7 using namespace std;
     8 
     9 const int N = 2e3 + 5;
    10 
    11 int n, m, p;
    12 int a[N][N], sum[N][N], cost[N];
    13 int f[N], ans;
    14 
    15 inline int read() {
    16     int X = 0, p = 1; char c = getchar();
    17     for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1;
    18     for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0';
    19     return X * p;
    20 }
    21 
    22 inline int ch(int x) {
    23     return (x - 1 + n) % n + 1;
    24 }
    25 
    26 int main()
    27 {
    28     n = rd; m = rd; p = rd;
    29     rep(i, 1, n) rep(j, 1, m) a[i][j] = rd;
    30     rep(j, 1, m) rep(i, 1, n) sum[i][j] = sum[ch(i - 1)][j - 1] + a[i][j];
    31     rep(i, 1, n) cost[i] = rd;
    32     memset(f, 128, sizeof(f));
    33     f[1] = 0;
    34     rep(j, 1, m) rep(i, 1, n) rep(k, 1, p) {
    35         if(j + k > m + 1) break;
    36         f[j + k] = max(f[j + k], f[j] + sum[ch(i + k - 1)][j + k - 1] - sum[ch(i - 1)][j - 1] - cost[i]);
    37     }
    38     rep(i, 1, m + 1) ans = max(ans, f[i]);
    39     printf("%d
    ", ans);
    40 }
    View Code

     

  • 相关阅读:
    智能家居——安全信息收集(一)
    PMP软件管理之路——站在巨人的肩膀上(一)
    Linux——信息收集(二)Nikto网页服务器扫描器
    XML约束(3)
    xml基本语法(2)
    xml概述(1)
    ajax接受json响应
    ajax接受json响应(讲义)
    json与xml的比较
    零碎小技能
  • 原文地址:https://www.cnblogs.com/cychester/p/9579143.html
Copyright © 2020-2023  润新知