Solution
用对角线的前缀和快速进行转移,复杂度$O(N^3)$, 洛谷神机太快了$N^3$都能过
然而正解是单调队列优化, 能优化到$O(N^2)$,然而我弱得什么都不会
Code
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define rd read() 5 #define rep(i,a,b) for(register int i = (a); i <= (b); ++i) 6 #define per(i,a,b) for(register int i = (a); i >= (b); --i) 7 using namespace std; 8 9 const int N = 2e3 + 5; 10 11 int n, m, p; 12 int a[N][N], sum[N][N], cost[N]; 13 int f[N], ans; 14 15 inline int read() { 16 int X = 0, p = 1; char c = getchar(); 17 for(; c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1; 18 for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0'; 19 return X * p; 20 } 21 22 inline int ch(int x) { 23 return (x - 1 + n) % n + 1; 24 } 25 26 int main() 27 { 28 n = rd; m = rd; p = rd; 29 rep(i, 1, n) rep(j, 1, m) a[i][j] = rd; 30 rep(j, 1, m) rep(i, 1, n) sum[i][j] = sum[ch(i - 1)][j - 1] + a[i][j]; 31 rep(i, 1, n) cost[i] = rd; 32 memset(f, 128, sizeof(f)); 33 f[1] = 0; 34 rep(j, 1, m) rep(i, 1, n) rep(k, 1, p) { 35 if(j + k > m + 1) break; 36 f[j + k] = max(f[j + k], f[j] + sum[ch(i + k - 1)][j + k - 1] - sum[ch(i - 1)][j - 1] - cost[i]); 37 } 38 rep(i, 1, m + 1) ans = max(ans, f[i]); 39 printf("%d ", ans); 40 }