• Python爬虫技术--基础篇--函数式编程(上篇)


    概述

    函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程序设计。函数就是面向过程的程序设计的基本单元。

    而函数式编程(请注意多了一个“式”字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。

    我们首先要搞明白计算机(Computer)和计算(Compute)的概念。

    在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。

    而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。

    对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。

    函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

    函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

    Python对函数式编程提供部分支持。由于Python允许使用变量,因此,Python不是纯函数式编程语言

    1.高阶函数

    高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。

    变量可以指向函数

    以Python内置的求绝对值的函数abs()为例,调用该函数用以下代码:

    >>> abs(-10)
    10
    

    但是,如果只写abs呢?

    >>> abs
    <built-in function abs>
    

    可见,abs(-10)是函数调用,而abs是函数本身。

    要获得函数调用结果,我们可以把结果赋值给变量:

    >>> x = abs(-10)
    >>> x
    10
    

    但是,如果把函数本身赋值给变量呢?

    >>> f = abs
    >>> f
    <built-in function abs>
    

    结论:函数本身也可以赋值给变量,即:变量可以指向函数

    如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:

    >>> f = abs
    >>> f(-10)
    10
    

    成功!说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同

    函数名也是变量

    那么函数名是什么呢?函数名其实就是指向函数的变量!对于abs()这个函数,完全可以把函数名abs看成变量,它指向一个可以计算绝对值的函数!

    如果把abs指向其他对象,会有什么情况发生?

    >>> abs = 10
    >>> abs(-10)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: 'int' object is not callable
    

    abs指向10后,就无法通过abs(-10)调用该函数了!因为abs这个变量已经不指向求绝对值函数而是指向一个整数10

    当然实际代码绝对不能这么写,这里是为了说明函数名也是变量。要恢复abs函数,请重启Python交互环境。

    注:由于abs函数实际上是定义在import builtins模块中的,所以要让修改abs变量的指向在其它模块也生效,要用import builtins; builtins.abs = 10

    传入函数

    既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数

    一个最简单的高阶函数:

    def add(x, y, f):
        return f(x) + f(y)
    

    当我们调用add(-5, 6, abs)时,参数xyf分别接收-56abs,根据函数定义,我们可以推导计算过程为:

    x = -5
    y = 6
    f = abs
    f(x) + f(y) ==> abs(-5) + abs(6) ==> 11
    return 11

    高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。

    变量可以指向函数

    以Python内置的求绝对值的函数abs()为例,调用该函数用以下代码:

    >>> abs(-10)
    10
    

    但是,如果只写abs呢?

    >>> abs
    <built-in function abs>
    

    可见,abs(-10)是函数调用,而abs是函数本身。

    要获得函数调用结果,我们可以把结果赋值给变量:

    >>> x = abs(-10)
    >>> x
    10
    

    但是,如果把函数本身赋值给变量呢?

    >>> f = abs
    >>> f
    <built-in function abs>
    

    结论:函数本身也可以赋值给变量,即:变量可以指向函数。

    如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:

    >>> f = abs
    >>> f(-10)
    10
    

    成功!说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同。

    函数名也是变量

    那么函数名是什么呢?函数名其实就是指向函数的变量!对于abs()这个函数,完全可以把函数名abs看成变量,它指向一个可以计算绝对值的函数!

    如果把abs指向其他对象,会有什么情况发生?

    >>> abs = 10
    >>> abs(-10)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: 'int' object is not callable
    

    abs指向10后,就无法通过abs(-10)调用该函数了!因为abs这个变量已经不指向求绝对值函数而是指向一个整数10

    当然实际代码绝对不能这么写,这里是为了说明函数名也是变量。要恢复abs函数,请重启Python交互环境。

    注:由于abs函数实际上是定义在import builtins模块中的,所以要让修改abs变量的指向在其它模块也生效,要用import builtins; builtins.abs = 10

    传入函数

    既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

    一个最简单的高阶函数:

    def add(x, y, f):
        return f(x) + f(y)
    

    当我们调用add(-5, 6, abs)时,参数xyf分别接收-56abs,根据函数定义,我们可以推导计算过程为:

    x = -5
    y = 6
    f = abs
    f(x) + f(y) ==> abs(-5) + abs(6) ==> 11
    return 11

    1.1map/reduce

    Python内建了map()reduce()函数。

    如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified Data Processing on Large Clusters”,你就能大概明白map/reduce的概念。

    我们先看map。map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

    举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现如下:

                f(x) = x * x
    
                      │
                      │
      ┌───┬───┬───┬───┼───┬───┬───┬───┐
      │   │   │   │   │   │   │   │   │
      ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼
    
    [ 1   2   3   4   5   6   7   8   9 ]
    
      │   │   │   │   │   │   │   │   │
      │   │   │   │   │   │   │   │   │
      ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼   ▼
    
    [ 1   4   9  16  25  36  49  64  81 ]
    

    现在,我们用Python代码实现:

    >>> def f(x):
    ...     return x * x
    ...
    >>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> list(r)
    [1, 4, 9, 16, 25, 36, 49, 64, 81]
    

    map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

    你可能会想,不需要map()函数,写一个循环,也可以计算出结果:

    L = []
    for n in [1, 2, 3, 4, 5, 6, 7, 8, 9]:
        L.append(f(n))
    print(L)
    

    的确可以,但是,从上面的循环代码,能一眼看明白“把f(x)作用在list的每一个元素并把结果生成一个新的list”吗?

    所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

    >>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
    ['1', '2', '3', '4', '5', '6', '7', '8', '9']
    

    只需要一行代码。

    再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, ...]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是

    reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
    

    比方说对一个序列求和,就可以用reduce实现:

    >>> from functools import reduce
    >>> def add(x, y):
    ...     return x + y
    ...
    >>> reduce(add, [1, 3, 5, 7, 9])
    25
    

    当然求和运算可以直接用Python内建函数sum(),没必要动用reduce

    但是如果要把序列[1, 3, 5, 7, 9]变换成整数13579reduce就可以派上用场:

    >>> from functools import reduce
    >>> def fn(x, y):
    ...     return x * 10 + y
    ...
    >>> reduce(fn, [1, 3, 5, 7, 9])
    13579
    

    这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

    >>> from functools import reduce
    >>> def fn(x, y):
    ...     return x * 10 + y
    ...
    >>> def char2num(s):
    ...     digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
    ...     return digits[s]
    ...
    >>> reduce(fn, map(char2num, '13579'))
    13579
    

    整理成一个str2int的函数就是:

    from functools import reduce
    
    DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
    
    def str2int(s):
        def fn(x, y):
            return x * 10 + y
        def char2num(s):
            return DIGITS[s]
        return reduce(fn, map(char2num, s))
    

    还可以用lambda函数进一步简化成:

    from functools import reduce
    
    DIGITS = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
    
    def char2num(s):
        return DIGITS[s]
    
    def str2int(s):
        return reduce(lambda x, y: x * 10 + y, map(char2num, s))
    

    也就是说,假设Python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码!

    lambda函数的用法在后面介绍。

    1.2filter

    Python内建的filter()函数用于过滤序列。

    map()类似,filter()也接收一个函数和一个序列。map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素

    例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

    def is_odd(n):
        return n % 2 == 1
    
    list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
    # 结果: [1, 5, 9, 15]
    

    把一个序列中的空字符串删掉,可以这么写:

    def not_empty(s):
        return s and s.strip()
    
    list(filter(not_empty, ['A', '', 'B', None, 'C', '  ']))
    # 结果: ['A', 'B', 'C']
    

    可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

    注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

    用filter求素数

    计算素数的一个方法是埃氏筛法,它的算法理解起来非常简单:

    首先,列出从2开始的所有自然数,构造一个序列:

    2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

    取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:

    3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

    取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:

    5, 6, 7, 8910, 11, 12, 13, 141516, 17, 18, 19, 20, ...

    取新序列的第一个数5,然后用5把序列的5的倍数筛掉:

    7, 8910, 11, 12, 13, 141516, 17, 18, 19, 20, ...

    不断筛下去,就可以得到所有的素数。

    用Python来实现这个算法,可以先构造一个从3开始的奇数序列:

    def _odd_iter():
        n = 1
        while True:
            n = n + 2
            yield n
    

    注意这是一个生成器,并且是一个无限序列。

    然后定义一个筛选函数:

    def _not_divisible(n):
        return lambda x: x % n > 0
    

    最后,定义一个生成器,不断返回下一个素数:

    def primes():
        yield 2
        it = _odd_iter() # 初始序列
        while True:
            n = next(it) # 返回序列的第一个数
            yield n
            it = filter(_not_divisible(n), it) # 构造新序列
    

    这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。

    由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:

    # 打印1000以内的素数:
    for n in primes():
        if n < 1000:
            print(n)
        else:
            break
    

    注意到Iterator是惰性计算的序列,所以我们可以用Python表示“全体自然数”,“全体素数”这样的序列,而代码非常简洁。

    小结

    filter()的作用是从一个序列中筛出符合条件的元素。由于filter()使用了惰性计算,所以只有在取filter()结果的时候,才会真正筛选并每次返回下一个筛出的元素。

    1.3排序算法

    排序算法

    排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。

    Python内置的sorted()函数就可以对list进行排序:

    >>> sorted([36, 5, -12, 9, -21])
    [-21, -12, 5, 9, 36]
    

    此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

    >>> sorted([36, 5, -12, 9, -21], key=abs)
    [5, 9, -12, -21, 36]
    

    key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:

    list = [36, 5, -12, 9, -21]
    
    keys = [36, 5,  12, 9,  21]
    

    然后sorted()函数按照keys进行排序,并按照对应关系返回list相应的元素:

    keys排序结果 => [5, 9,  12,  21, 36]
                    |  |    |    |   |
    最终结果     => [5, 9, -12, -21, 36]
    

    我们再看一个字符串排序的例子:

    >>> sorted(['bob', 'about', 'Zoo', 'Credit'])
    ['Credit', 'Zoo', 'about', 'bob']
    

    默认情况下,对字符串排序,是按照ASCII的大小比较的,由于'Z' < 'a',结果,大写字母Z会排在小写字母a的前面。

    现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。

    这样,我们给sorted传入key函数,即可实现忽略大小写的排序:

    >>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
    ['about', 'bob', 'Credit', 'Zoo']
    

    要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True

    >>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
    ['Zoo', 'Credit', 'bob', 'about']
    

    从上述例子可以看出,高阶函数的抽象能力是非常强大的,而且,核心代码可以保持得非常简洁。

    小结

    sorted()也是一个高阶函数。用sorted()排序的关键在于实现一个映射函数

  • 相关阅读:
    含字母的数字排序
    ci中简单实用的权限管理
    时间戳和日期转换
    prop
    定时器
    centos查看防火墙策略是firewall还是iptables
    centos上安装rabbitmq服务器
    springcloud微服务feign消费模式解决 com.netflix.client.ClientException: Load balancer does not have available server for client:xxx
    java正则去掉json字符串key的引号
    centos安装redis
  • 原文地址:https://www.cnblogs.com/cy0628/p/14143627.html
Copyright © 2020-2023  润新知