转自:http://blog.csdn.net/androidlushangderen/article/details/41356521
在Hadoop中,启动作业运行的方式有很多,可以用命令行格式把打包好后的作业提交还可以,用Hadoop的插件进行应用开发,在这么多的方式中,都会必经过一个流程,作业会以JobInProgress的形式提交到JobTracker中。什么叫JobTracker呢,也许有些人了解Hadoop只知道他的MapReduce计算模型,那个过程只是其中的Task执行的一个具体过程,比较微观上的流程,而JobTrack是一个比较宏观上的东西。涉及到作业的提交的过程。Hadoop遵循的是Master/Slave的架构,也就是主从关系,对应的就是JobTracker/TaskTracker,前者负责资源管理和作业调度,后者主要负责执行由前者分配过来的作业。这样说的话,简单明了。JobTracker里面的执行的过程很多,那就得从开头开始分析,也就是作业最最开始的提交流程开始。后面的分析我会结合MapReduce的代码穿插式的分析,便于大家理解。
其实在作业的提交状态之前,还不会到达JobTacker阶段的,首先是到了MapReduce中一个叫JobClient的类中。也就是说,比如用户通过bin/hadoop jar xxx.jar把打包的jar包上传到系统中时,首先会触发的就是JobClient.。
- public RunningJob submitJob(String jobFile) throws FileNotFoundException,
- InvalidJobConfException,
- IOException {
- // Load in the submitted job details
- JobConf job = new JobConf(jobFile);
- return submitJob(job);
- }
之后人家根据配置文件接着调用submitJob()方法
- public RunningJob submitJob(JobConf job) throws FileNotFoundException,
- IOException {
- try {
- //又继续调用的是submitJobInternal方法
- return submitJobInternal(job);
- } catch (InterruptedException ie) {
- throw new IOException("interrupted", ie);
- } catch (ClassNotFoundException cnfe) {
- throw new IOException("class not found", cnfe);
- }
- }
来到了submitJobInternal的主要方法了
- ...
- jobCopy = (JobConf)context.getConfiguration();
- // Create the splits for the job 为作业创建输入信息
- FileSystem fs = submitJobDir.getFileSystem(jobCopy);
- LOG.debug("Creating splits at " + fs.makeQualified(submitJobDir));
- int maps = writeSplits(context, submitJobDir);
- jobCopy.setNumMapTasks(maps);
- // write "queue admins of the queue to which job is being submitted"
- // to job file.
- String queue = jobCopy.getQueueName();
- AccessControlList acl = jobSubmitClient.getQueueAdmins(queue);
- jobCopy.set(QueueManager.toFullPropertyName(queue,
- QueueACL.ADMINISTER_JOBS.getAclName()), acl.getACLString());
- // Write job file to JobTracker's fs
- FSDataOutputStream out =
- FileSystem.create(fs, submitJobFile,
- new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION));
- try {
- jobCopy.writeXml(out);
- } finally {
- out.close();
- }
- //
- // Now, actually submit the job (using the submit name)
- //
- printTokens(jobId, jobCopy.getCredentials());
- //所有信息配置完毕,作业的初始化工作完成,最后将通过RPC方式正式提交作业
- status = jobSubmitClient.submitJob(
- jobId, submitJobDir.toString(), jobCopy.getCredentials());
- JobProfile prof = jobSubmitClient.getJobProfile(jobId);
在这里他会执行一些作业提交之前需要进行的初始化工作,最后会RPC调用远程的提交方法。下面是一个时序图
至此我们知道,我们作业已经从本地提交出去了,后面的事情就是JobTracker的事情了,这个时候我们直接会触发的是JobTacker的addJob()方法。
- private synchronized JobStatus addJob(JobID jobId, JobInProgress job)
- throws IOException {
- totalSubmissions++;
- synchronized (jobs) {
- synchronized (taskScheduler) {
- jobs.put(job.getProfile().getJobID(), job);
- //观察者模式,会触发每个监听器的方法
- for (JobInProgressListener listener : jobInProgressListeners) {
- listener.jobAdded(job);
- }
- }
- }
- myInstrumentation.submitJob(job.getJobConf(), jobId);
- job.getQueueMetrics().submitJob(job.getJobConf(), jobId);
- LOG.info("Job " + jobId + " added successfully for user '"
- + job.getJobConf().getUser() + "' to queue '"
- + job.getJobConf().getQueueName() + "'");
- AuditLogger.logSuccess(job.getUser(),
- Operation.SUBMIT_JOB.name(), jobId.toString());
- return job.getStatus();
- }
在这里设置了很多监听器,监听作业的一个情况。那么分析到这里,我们当然也也要顺便学习一下JobTracker的是怎么运行开始的呢。其实JobTracker是一个后台服务程序,他有自己的main方法入口执行地址。上面的英文是这么对此进行描述的:
- /**
- * Start the JobTracker process. This is used only for debugging. As a rule,
- * JobTracker should be run as part of the DFS Namenode process.
- * JobTracker也是一个后台进程,伴随NameNode进程启动进行,main方法是他的执行入口地址
- */
- public static void main(String argv[]
- ) throws IOException, InterruptedException
上面说的很明白,作为NameNode的附属进程操作,NameNode跟JonTracker一样,全局只有一个,也是Master/Slave的关系对应的是DataNode数据结点。这些是HDFS相关的东西了。
- public static void main(String argv[]
- ) throws IOException, InterruptedException {
- StringUtils.startupShutdownMessage(JobTracker.class, argv, LOG);
- try {
- if(argv.length == 0) {
- //调用startTracker方法开始启动JobTracker
- JobTracker tracker = startTracker(new JobConf());
- //JobTracker初始化完毕,开启里面的各项线程服务
- tracker.offerService();
- }
- else {
- if ("-dumpConfiguration".equals(argv[0]) && argv.length == 1) {
- dumpConfiguration(new PrintWriter(System.out));
- }
- else {
- System.out.println("usage: JobTracker [-dumpConfiguration]");
- System.exit(-1);
- }
- }
- } catch (Throwable e) {
- LOG.fatal(StringUtils.stringifyException(e));
- System.exit(-1);
- }
- }
里面2个主要方法,初始化JobTracker,第二个开启服务方法。首先看startTracker(),最后会执行到new JobTracker()构造函数里面去了:
- JobTracker(final JobConf conf, String identifier, Clock clock, QueueManager qm)
- throws IOException, InterruptedException {
- .....
- //初始化安全相关操作
- secretManager =
- new DelegationTokenSecretManager(secretKeyInterval,
- tokenMaxLifetime,
- tokenRenewInterval,
- DELEGATION_TOKEN_GC_INTERVAL);
- secretManager.startThreads();
- ......
- // Read the hosts/exclude files to restrict access to the jobtracker.
- this.hostsReader = new HostsFileReader(conf.get("mapred.hosts", ""),
- conf.get("mapred.hosts.exclude", ""));
- //初始化ACL访问控制列表
- aclsManager = new ACLsManager(conf, new JobACLsManager(conf), queueManager);
- LOG.info("Starting jobtracker with owner as " +
- getMROwner().getShortUserName());
- // Create the scheduler
- Class<? extends TaskScheduler> schedulerClass
- = conf.getClass("mapred.jobtracker.taskScheduler",
- JobQueueTaskScheduler.class, TaskScheduler.class);
- //初始化Task任务调度器
- taskScheduler = (TaskScheduler) ReflectionUtils.newInstance(schedulerClass, conf);
- // Set service-level authorization security policy
- if (conf.getBoolean(
- ServiceAuthorizationManager.SERVICE_AUTHORIZATION_CONFIG, false)) {
- ServiceAuthorizationManager.refresh(conf, new MapReducePolicyProvider());
- }
- int handlerCount = conf.getInt("mapred.job.tracker.handler.count", 10);
- this.interTrackerServer =
- RPC.getServer(this, addr.getHostName(), addr.getPort(), handlerCount,
- false, conf, secretManager);
- if (LOG.isDebugEnabled()) {
- Properties p = System.getProperties();
- for (Iterator it = p.keySet().iterator(); it.hasNext();) {
- String key = (String) it.next();
- String val = p.getProperty(key);
- LOG.debug("Property '" + key + "' is " + val);
- }
- }
里面主要干了这么几件事:
1.初始化ACL访问控制列表数据
2.创建TaskSchedule任务调度器
3.得到DPC Server。
4.还有其他一些零零碎碎的操作....
然后第2个方法offService(),主要开启了各项服务;
- public void offerService() throws InterruptedException, IOException {
- // Prepare for recovery. This is done irrespective of the status of restart
- // flag.
- while (true) {
- try {
- recoveryManager.updateRestartCount();
- break;
- } catch (IOException ioe) {
- LOG.warn("Failed to initialize recovery manager. ", ioe);
- // wait for some time
- Thread.sleep(FS_ACCESS_RETRY_PERIOD);
- LOG.warn("Retrying...");
- }
- }
- taskScheduler.start();
- .....
- this.expireTrackersThread = new Thread(this.expireTrackers,
- "expireTrackers");
- //启动该线程的主要作用是发现和清理死掉的任务
- this.expireTrackersThread.start();
- this.retireJobsThread = new Thread(this.retireJobs, "retireJobs");
- //启动该线程的作用是清理长时间驻留在内存中且已经执行完的任务
- this.retireJobsThread.start();
- expireLaunchingTaskThread.start();
- if (completedJobStatusStore.isActive()) {
- completedJobsStoreThread = new Thread(completedJobStatusStore,
- "completedjobsStore-housekeeper");
- //该线程的作用是把已经运行完成的任务的信息保存到HDFS中,以便后续的查询
- completedJobsStoreThread.start();
- }
- // start the inter-tracker server once the jt is ready
- this.interTrackerServer.start();
- synchronized (this) {
- state = State.RUNNING;
- }
- LOG.info("Starting RUNNING");
- this.interTrackerServer.join();
- LOG.info("Stopped interTrackerServer");
- }
主要3大线程在这个方法里被开开启了,expireTrackersThread,retireJobsThread,completedJobsStoreThread,还有1个RPC服务的开启,interTrackerServer.start(),还有细节的操作就不列举出来了。好了JobTraker的close方法的流程刚刚好和以上的操作相反,之前启动过的线程统统关掉。
- void close() throws IOException {
- //服务停止
- if (this.infoServer != null) {
- LOG.info("Stopping infoServer");
- try {
- this.infoServer.stop();
- } catch (Exception ex) {
- LOG.warn("Exception shutting down JobTracker", ex);
- }
- }
- if (this.interTrackerServer != null) {
- LOG.info("Stopping interTrackerServer");
- this.interTrackerServer.stop();
- }
- if (this.expireTrackersThread != null && this.expireTrackersThread.isAlive()) {
- LOG.info("Stopping expireTrackers");
- //执行线程中断操作
- this.expireTrackersThread.interrupt();
- try {
- //等待线程执行完毕再执行后面的操作
- this.expireTrackersThread.join();
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- if (this.retireJobsThread != null && this.retireJobsThread.isAlive()) {
- LOG.info("Stopping retirer");
- this.retireJobsThread.interrupt();
- try {
- this.retireJobsThread.join();
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- if (taskScheduler != null) {
- //调度器的方法终止
- taskScheduler.terminate();
- }
- if (this.expireLaunchingTaskThread != null && this.expireLaunchingTaskThread.isAlive()) {
- LOG.info("Stopping expireLaunchingTasks");
- this.expireLaunchingTaskThread.interrupt();
- try {
- this.expireLaunchingTaskThread.join();
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- if (this.completedJobsStoreThread != null &&
- this.completedJobsStoreThread.isAlive()) {
- LOG.info("Stopping completedJobsStore thread");
- this.completedJobsStoreThread.interrupt();
- try {
- this.completedJobsStoreThread.join();
- } catch (InterruptedException ex) {
- ex.printStackTrace();
- }
- }
- if (jobHistoryServer != null) {
- LOG.info("Stopping job history server");
- try {
- jobHistoryServer.shutdown();
- } catch (Exception ex) {
- LOG.warn("Exception shutting down Job History server", ex);
- }
- }
- DelegationTokenRenewal.close();
- LOG.info("stopped all jobtracker services");
- return;
- }
至此,JobTracker的执行过程总算有了一个了解了吧,不算太难。后面的过程分析。JobTracker是如何把任务进行分解和分配的,从宏观上去理解Hadoop的工作原理。下面是以上过程的一个时序图