数据集的格式如下:
datasets----train文件夹(WA和WKY文件夹,里面分别存放了200张图片)
----test文件夹(WA和WKY文件夹,里面分别存放了100张图片)
每一张图片都有自己的文件名,train中WA的图片标签为0,WKY的图片标签为1。
1.构建Dataset
1 import os 2 import random 3 import torch 4 from torch.utils.data import Dataset 5 import torchvision 6 import imghdr 7 from PIL import Image 8 import matplotlib.pyplot as plt 9 10 11 class MedicalDataset(Dataset): 12 def __init__(self, root, split, data_ratio=1.0): 13 self.img_list = list() #self.img_list存储的是所有.jpg文件的绝对路径名 14 self.cls_list = list() #存储label索引 15 self.cls_num = dict() #每个类别的样本个数 16 17 18 classes = ['WA', 'WKY'] 19 for idx, cls in enumerate(classes): 20 img_list = sorted(os.listdir(os.path.join(root, split, cls))) 21 self.cls_num[cls] = len(img_list) 22 for img_fp in img_list: #取出每一个文件名 23 self.img_list.append(os.path.join(root, split, cls, img_fp)) 24 self.cls_list.append(idx) 25 26 if data_ratio < 1.0: 27 shuffled_idxs = list(range(len(self.img_list))) 28 random.shuffle(shuffled_idxs) 29 num_samples = round(data_ratio * len(self.img_list)) 30 img_list = list() 31 cls_list = list() 32 for idx in shuffled_idxs[:num_samples]: 33 img_list.append(self.img_list[idx]) 34 cls_list.append(self.cls_list[idx]) 35 self.img_list = img_list 36 self.cls_list = cls_list 37 38 if split == 'train': 39 self.trans = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 40 torchvision.transforms.RandomCrop(224), 41 torchvision.transforms.RandomHorizontalFlip(), 42 torchvision.transforms.ToTensor(), 43 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 44 [0.229, 0.224, 0.225]) 45 ]) 46 else: 47 self.trans = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 48 torchvision.transforms.CenterCrop(224), 49 torchvision.transforms.ToTensor(), 50 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 51 [0.229, 0.224, 0.225]) 52 ]) 53 54 def _getdata(self): 55 return self.img_list 56 57 def __getitem__(self, index): 58 name = self.img_list[index] 59 img = Image.open(name) 60 img = self.trans(img) 61 label = self.cls_list[index] 62 return img, label #这里必须返回img和label,否则后面取出来的格式不对 63 64 def __len__(self): 65 return len(self.img_list)
如果想查看图片的话,
1 from torch.utils.data import DataLoader 2 3 dataset = MedicalDataset('datasets/', 'train') 4 print('dataset: ', dataset) 5 print('len= ', dataset.__len__()) # 训练集总共样本数:400 6 7 img, label = dataset.__getitem__(-1) 8 print('img.shape= ', img.shape) # torch.Size([3, 224, 224]) 9 print('label= ', label) # 1 10 11 loader = DataLoader(dataset, batch_size=16, shuffle=True) #loader中每次迭代的元素就是item返回的值 12 print(next(iter(loader))[0].shape, next(iter(loader))[1].shape) #torch.Size([16, 3, 224, 224]), torch.Size([16]) 13 14 #显示一张图片 15 unloader = torchvision.transforms.ToPILImage() # .ToPILImage() 把tensor或数组转换成图像 16 17 def imshow(tensor, title=None): 18 image = tensor.cpu().clone() # we clone the tensor to not do changes on it 19 image = image.squeeze(0) 20 21 image = unloader(image) # tensor转换成图像 22 plt.imshow(image) 23 if title is not None: 24 plt.title(title) 25 plt.pause(1) # 只是延迟显示作用 26 27 plt.figure() 28 imshow(img, title='Image')
2.创建DataLoader
parser.add_argument("--dataset-path", default='./datasets', type=str, help="Path of the trainset.")
1 # 创建数据集 2 train_dataset = MedicalDataset(args.dataset_path, 'train') 3 test_dataset = MedicalDataset(args.dataset_path, 'test') 4 print(len(train_dataset), len(test_dataset)) # 训练集400,测试集200 5 # 把训练集分割成训练集和验证集,比例为8:2 6 train_size = int(0.8 * len(train_dataset)) 7 val_size = len(train_dataset) - train_size 8 train_dataset, val_dataset = random_split(train_dataset, [train_size, val_size]) 9 10 train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True) 11 val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True) 12 test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
3.oversample过采样
假如train中WA和WKY的数据不平衡(eg训练集中WA有1555张,WKY有496张,验证集中WA有223张,WKY有70张,测试集中WA有444张,WKY有142张),需要对WKY的训练集和验证集进行过采样(不是单纯的重复,使用数据增强),测试集不用管。
1 import os 2 import random 3 import torch 4 from torch.utils.data import Dataset 5 import torchvision 6 from PIL import Image 7 8 class MedicalDataset(Dataset): 9 def __init__(self, root, split, data_ratio=1.0, ret_name=False): 10 assert split in ['train', 'val', 'test'] 11 self.ret_name = ret_name 12 self.cls_to_ind_dict = dict() 13 self.ind_to_cls_dict = list() 14 self.img_list = list() 15 self.cls_list = list() 16 self.cls_num = dict() 17 18 classes = ['WA', 'WKY'] 19 if split=='test': 20
21 for idx, cls in enumerate(classes): 22 self.cls_to_ind_dict[cls] = idx 23 self.ind_to_cls_dict.append(cls) 24 img_list = sorted(os.listdir(os.path.join(root, split, cls))) 25 self.cls_num[cls] = len(img_list) 26 for img_fp in img_list: 27 self.img_list.append(os.path.join(root, split, cls, img_fp)) 28 self.cls_list.append(idx) 29 30 31 else: 32 img_list_temp, cls_list_temp = [],[] 33
34 for idx, cls in enumerate(classes): 35 self.cls_to_ind_dict[cls] = idx 36 self.ind_to_cls_dict.append(cls) 37 if cls == 'WA': #WA的训练集数量不用扩 38 img_list = sorted(os.listdir(os.path.join(root, split, cls))) 39 self.cls_num[cls] = len(img_list) 40 for img_fp in img_list: 41 self.img_list.append(os.path.join(root, split, cls, img_fp)) 42 self.cls_list.append(idx) 43 print(cls, '=======================') 44 print(len(self.img_list), len(self.cls_list)) 45 46 else: 47 img_list = sorted(os.listdir(os.path.join(root, split, cls))) 48 49 for img_fp in img_list: 50 img_list_temp.append(os.path.join(root, split, cls, img_fp)) 51 cls_list_temp.append(idx) 52 53 img_list_temp = [val for val in img_list_temp for i in range(3)] #将原来的img_list重复三遍 54 cls_list_temp = [val for val in cls_list_temp for i in range(3)] 55 self.cls_num[cls] = len(img_list_temp) #记录每个类别的新数目 56 57 print(cls, '=======================') 58 print(len(img_list_temp), len(cls_list_temp)) 59 60 self.img_list = self.img_list + img_list_temp 61 self.cls_list = self.cls_list + cls_list_temp 62 63 print(len(self.img_list), len(self.cls_list)) 64 65 66 # 强制水平翻转 67 self.trans0 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 68 torchvision.transforms.RandomCrop(224), 69 torchvision.transforms.RandomHorizontalFlip(p=1), 70 torchvision.transforms.ToTensor(), 71 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 72 [0.229, 0.224, 0.225]) 73 ]) 74 # 强制垂直翻转 75 self.trans1 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 76 torchvision.transforms.RandomCrop(224), 77 torchvision.transforms.RandomVerticalFlip(p=1), 78 torchvision.transforms.ToTensor(), 79 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 80 [0.229, 0.224, 0.225]) 81 ]) 82 # 旋转-90~90 83 self.trans2 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 84 torchvision.transforms.RandomCrop(224), 85 torchvision.transforms.RandomRotation(90), 86 torchvision.transforms.ToTensor(), 87 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 88 [0.229, 0.224, 0.225]) 89 ]) 90 91 # 亮度在0-2之间增强,0是原图 92 self.trans3 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 93 torchvision.transforms.RandomCrop(224), 94 torchvision.transforms.ColorJitter(brightness=1), 95 torchvision.transforms.ToTensor(), 96 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 97 [0.229, 0.224, 0.225]) 98 ]) 99 # 修改对比度,0-2之间增强,0是原图 100 self.trans4 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 101 torchvision.transforms.RandomCrop(224), 102 torchvision.transforms.ColorJitter(contrast=2), 103 torchvision.transforms.ToTensor(), 104 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 105 [0.229, 0.224, 0.225]) 106 ]) 107 # 颜色变化 108 self.trans5 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 109 torchvision.transforms.RandomCrop(224), 110 torchvision.transforms.ColorJitter(hue=0.5), 111 torchvision.transforms.ToTensor(), 112 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 113 [0.229, 0.224, 0.225]) 114 ]) 115 # 混合 116 self.trans6 = torchvision.transforms.Compose([torchvision.transforms.Resize(256), 117 torchvision.transforms.RandomCrop(224), 118 torchvision.transforms.ColorJitter(brightness=1, contrast=2, hue=0.5), 119 torchvision.transforms.ToTensor(), 120 torchvision.transforms.Normalize([0.485, 0.456, 0.406], 121 [0.229, 0.224, 0.225]) 122 ]) 123 self.trans_list = [self.trans0, self.trans1, self.trans2, self.trans3, self.trans4, self.trans5, self.trans6] 124 125 126 127 def __getitem__(self, index): 128 name = self.img_list[index] 129 img = Image.open(name) 130 num = random.randint(0, 6) 131 img = self.trans_list[num](img) 132 label = self.cls_list[index] 133 if self.ret_name: 134 return img, label, name 135 else: 136 return img, label 137 138 def __len__(self): 139 return len(self.img_list)
扩展后WKY的训练集个数为1488,验证集个数为210,测试集个数依然是142。通过过采样,无论WA做正例还是负例,得到的灵敏度都相似,不会有非常大的差别。