• 循环序列模型-week2编程题1(词向量的运算)


    1.余弦相似度

    加载需要的包和词向量(选择加载训练好的词嵌入数据)

    1 import numpy as np
    2 from w2v_utils import *
    3 
    4 #words:单词集合
    5 #word_to_vec:字典类型,{word:该word的50维度的嵌入向量}
    6 words, word_to_vec_map = read_glove_vecs('datasets/glove.6B.50d.txt')

     1 def cosine_similarity(u, v):
     2     """
     3     Cosine similarity reflects the degree of similariy between u and v
     4         
     5     Arguments:
     6         u -- a word vector of shape (n,)          
     7         v -- a word vector of shape (n,)
     8 
     9     Returns:
    10         cosine_similarity -- the cosine similarity between u and v defined by the formula above.
    11     """
    12     distance = 0.0
    13     
    14     ### START CODE HERE ###
    15     # Compute the dot product between u and v (≈1 line)
    16     numerator = np.dot(u,v)
    17     # Compute the L2 norm of u (≈1 line)
    18     norm_u = np.linalg.norm(u)
    19     # Compute the L2 norm of v (≈1 line)
    20     norm_v = np.linalg.norm(v)
    21     # Compute the cosine similarity defined by formula (1) (≈1 line)
    22     cosine_similarity = numerator/(norm_u*norm_v)
    23     ### END CODE HERE ###
    24     
    25     return cosine_similarity

    测试一下:

     1 father = word_to_vec_map["father"]
     2 mother = word_to_vec_map["mother"]
     3 ball = word_to_vec_map["ball"]
     4 crocodile = word_to_vec_map["crocodile"]
     5 france = word_to_vec_map["france"]
     6 italy = word_to_vec_map["italy"]
     7 paris = word_to_vec_map["paris"]
     8 rome = word_to_vec_map["rome"]
     9 
    10 print("cosine_similarity(father, mother) = ", cosine_similarity(father, mother))
    11 print("cosine_similarity(ball, crocodile) = ",cosine_similarity(ball, crocodile))
    12 print("cosine_similarity(france - paris, rome - italy) = ",cosine_similarity(france - paris, rome - italy))

    cosine_similarity(father, mother) = 0.890903844289
    cosine_similarity(ball, crocodile) = 0.274392462614
    cosine_similarity(france - paris, rome - italy) = -0.675147930817

    2.词类类比

     1 def complete_analogy(word_a, word_b, word_c, word_to_vec_map):
     2     """
     3     Performs the word analogy task as explained above: a is to b as c is to ____. 
     4     
     5     Arguments:
     6     word_a -- a word, string
     7     word_b -- a word, string
     8     word_c -- a word, string
     9     word_to_vec_map -- dictionary that maps words to their corresponding vectors. 
    10     
    11     Returns:
    12     best_word --  the word such that v_b - v_a is close to v_best_word - v_c, as measured by cosine similarity
    13     """
    14     # convert words to lower case
    15     word_a, word_b, word_c = word_a.lower(), word_b.lower(), word_c.lower()
    16     
    17     ### START CODE HERE ###
    18     # Get the word embeddings v_a, v_b and v_c (≈1-3 lines)
    19     e_a, e_b, e_c = word_to_vec_map[word_a], word_to_vec_map[word_b], word_to_vec_map[word_c]
    20     ### END CODE HERE ###
    21     
    22     words = word_to_vec_map.keys()
    23     max_cosine_sim = -100              # Initialize max_cosine_sim to a large negative number
    24     best_word = None                   # Initialize best_word with None, it will help keep track of the word to output
    25 
    26     # loop over the whole word vector set
    27     for w in words:        
    28         # to avoid best_word being one of the input words, pass on them.
    29         if w in [word_a, word_b, word_c] :
    30             continue
    31         
    32         ### START CODE HERE ###
    33         # Compute cosine similarity between the vector (e_b - e_a) and the vector ((w's vector representation) - e_c)  (≈1 line)
    34         cosine_sim = cosine_similarity((e_b-e_a), (word_to_vec_map[w]-e_c))
    35         # If the cosine_sim is more than the max_cosine_sim seen so far,
    36             # then: set the new max_cosine_sim to the current cosine_sim and the best_word to the current word (≈3 lines)
    37         if cosine_sim > max_cosine_sim:
    38             max_cosine_sim = cosine_sim
    39             best_word = w
    40         ### END CODE HERE ###
    41         
    42     return best_word

    测试一下:

    1 triads_to_try = [('italy', 'italian', 'spain'), ('india', 'delhi', 'japan'), ('man', 'woman', 'boy'), ('small', 'smaller', 'large')]
    2 for triad in triads_to_try:
    3     print ('{} -> {} :: {} -> {}'.format( *triad, complete_analogy(*triad,word_to_vec_map)))

    italy -> italian :: spain -> spanish
    india -> delhi :: japan -> tokyo
    man -> woman :: boy -> girl
    small -> smaller :: large -> larger

    3.去除词向量中的偏见

     首先看一下 GloVe词嵌入如何关联性别的,你将计算一个向量 g=ewomanemanewoman代表woman的词向量,eman代表man的词向量,得到的结果 g 粗略的包含性别这一概念。

    1 g = word_to_vec_map['woman'] - word_to_vec_map['man']
    2 print(g)

    结果:

    1 [-0.087144    0.2182     -0.40986    -0.03922    -0.1032      0.94165
    2  -0.06042     0.32988     0.46144    -0.35962     0.31102    -0.86824
    3   0.96006     0.01073     0.24337     0.08193    -1.02722    -0.21122
    4   0.695044   -0.00222     0.29106     0.5053     -0.099454    0.40445
    5   0.30181     0.1355     -0.0606     -0.07131    -0.19245    -0.06115
    6  -0.3204      0.07165    -0.13337    -0.25068714 -0.14293    -0.224957
    7  -0.149       0.048882    0.12191    -0.27362    -0.165476   -0.20426
    8   0.54376    -0.271425   -0.10245    -0.32108     0.2516     -0.33455
    9  -0.04371     0.01258   ]

    现在考虑不同单词与g的余弦相似度,考虑相似度的正值与相似度的负值之间的关系。

    1 # girls and boys name
    2 name_list = ['john', 'marie', 'sophie', 'ronaldo', 'priya', 'rahul', 'danielle', 'reza', 'katy', 'yasmin']
    3 
    4 for w in name_list:
    5     print (w, cosine_similarity(word_to_vec_map[w], g))

    结果女生名字和g的余弦相似度为正,而男生为负:

     1 john -0.23163356146
     2 marie 0.315597935396
     3 sophie 0.318687898594
     4 ronaldo -0.312447968503
     5 priya 0.17632041839
     6 rahul -0.169154710392
     7 danielle 0.243932992163
     8 reza -0.079304296722
     9 katy 0.283106865957
    10 yasmin 0.233138577679

    看看其他词:

    1 word_list = ['lipstick', 'guns', 'science', 'arts', 'literature', 'warrior','doctor', 'tree', 'receptionist', 
    2              'technology',  'fashion', 'teacher', 'engineer', 'pilot', 'computer', 'singer']
    3 for w in word_list:
    4     print (w, cosine_similarity(word_to_vec_map[w], g))

    结果:

     1 lipstick 0.276919162564
     2 guns -0.18884855679
     3 science -0.0608290654093
     4 arts 0.00818931238588
     5 literature 0.0647250443346
     6 warrior -0.209201646411
     7 doctor 0.118952894109
     8 tree -0.0708939917548
     9 receptionist 0.330779417506
    10 technology -0.131937324476
    11 fashion 0.0356389462577
    12 teacher 0.179209234318
    13 engineer -0.0803928049452
    14 pilot 0.00107644989919
    15 computer -0.103303588739
    16 singer 0.185005181365

    “computer”接近“man”,“literature ”接近“woman”,这些都是不对的观念,应该减少这些偏差。

    而对于grandfather与grandmother,actor与actress这些词本身具有性别偏差,应该均衡性别词。

    整体步骤:

    3.1中和与性别无关的词汇偏差

     1 def neutralize(word, g, word_to_vec_map):
     2     """
     3     Removes the bias of "word" by projecting it on the space orthogonal to the bias axis. 
     4     This function ensures that gender neutral words are zero in the gender subspace.
     5     
     6     Arguments:
     7         word -- string indicating the word to debias
     8         g -- numpy-array of shape (50,), corresponding to the bias axis (such as gender)
     9         word_to_vec_map -- dictionary mapping words to their corresponding vectors.
    10     
    11     Returns:
    12         e_debiased -- neutralized word vector representation of the input "word"
    13     """
    14     ### START CODE HERE ###
    15     # Select word vector representation of "word". Use word_to_vec_map. (≈ 1 line)
    16     e = word_to_vec_map[word]
    17     
    18     # Compute e_biascomponent using the formula give above. (≈ 1 line)
    19     e_biascomponent = np.divide(np.dot(e,g), np.square(np.linalg.norm(g))) * g
    20  
    21     # Neutralize e by substracting e_biascomponent from it 
    22     # e_debiased should be equal to its orthogonal projection. (≈ 1 line)
    23     e_debiased = e - e_biascomponent
    24     ### END CODE HERE ###
    25     
    26     return e_debiased

    测试一下:

    1 e = "receptionist"
    2 print("cosine similarity between " + e + " and g, before neutralizing: ", cosine_similarity(word_to_vec_map[e], g))
    3 
    4 e_debiased = neutralize("receptionist", g, word_to_vec_map)
    5 print("cosine similarity between " + e + " and g, after neutralizing: ", cosine_similarity(e_debiased, g))

    cosine similarity between receptionist and g, before neutralizing: 0.330779417506
    cosine similarity between receptionist and g, after neutralizing: 1.16820646645e-17

    中和之后,g和e的余弦相似度接近于0,

    3.2性别词的均衡算法

     将grandmother和grandfather这种性别对立的词移至与中间轴线等距的一对点上。

     1 def equalize(pair, bias_axis, word_to_vec_map):
     2     """
     3     Debias gender specific words by following the equalize method described in the figure above.
     4     
     5     Arguments:
     6     pair -- pair of strings of gender specific words to debias, e.g. ("actress", "actor") 
     7     bias_axis -- numpy-array of shape (50,), vector corresponding to the bias axis, e.g. gender
     8     word_to_vec_map -- dictionary mapping words to their corresponding vectors
     9     
    10     Returns
    11     e_1 -- word vector corresponding to the first word
    12     e_2 -- word vector corresponding to the second word
    13     """
    14     ### START CODE HERE ###
    15     # Step 1: Select word vector representation of "word". Use word_to_vec_map. (≈ 2 lines)
    16     w1, w2 = pair[0], pair[1] 
    17     e_w1, e_w2 = word_to_vec_map[w1], word_to_vec_map[w2]
    18     
    19     # Step 2: Compute the mean of e_w1 and e_w2 (≈ 1 line)
    20     mu = (e_w1 + e_w2)/2
    21 
    22     # Step 3: Compute the projections of mu over the bias axis and the orthogonal axis (≈ 2 lines)
    23     mu_B = np.divide(np.dot(mu,bias_axis), np.square(np.linalg.norm(bias_axis))) * bias_axis
    24     mu_orth = mu-mu_B
    25 
    26     # Step 4: Use equations (7) and (8) to compute e_w1B and e_w2B (≈2 lines)
    27     e_w1B = np.divide(np.dot(e_w1,bias_axis), np.square(np.linalg.norm(bias_axis))) * bias_axis
    28     e_w2B = np.divide(np.dot(e_w2,bias_axis), np.square(np.linalg.norm(bias_axis))) * bias_axis
    29         
    30     # Step 5: Adjust the Bias part of e_w1B and e_w2B using the formulas (9) and (10) given above (≈2 lines)
    31     corrected_e_w1B = np.sqrt(np.abs(1-np.square(np.linalg.norm(mu_orth)))) * np.divide((e_w1B-mu_B),np.abs(e_w1-mu_orth-mu_B))
    32     corrected_e_w2B = np.sqrt(np.abs(1-np.square(np.linalg.norm(mu_orth)))) * np.divide((e_w2B-mu_B),np.abs(e_w2-mu_orth-mu_B))
    33     # Step 6: Debias by equalizing e1 and e2 to the sum of their corrected projections (≈2 lines)
    34     e1 = corrected_e_w1B + mu_orth
    35     e2 = corrected_e_w2B + mu_orth                                                               
    36     ### END CODE HERE ###
    37     
    38     return e1, e2

    测试一下:

    1 print("cosine similarities before equalizing:")
    2 print("cosine_similarity(word_to_vec_map["man"], gender) = ", cosine_similarity(word_to_vec_map["man"], g))
    3 print("cosine_similarity(word_to_vec_map["woman"], gender) = ", cosine_similarity(word_to_vec_map["woman"], g))
    4 print()
    5 e1, e2 = equalize(("man", "woman"), g, word_to_vec_map)
    6 print("cosine similarities after equalizing:")
    7 print("cosine_similarity(e1, gender) = ", cosine_similarity(e1, g))
    8 print("cosine_similarity(e2, gender) = ", cosine_similarity(e2, g))

    cosine similarities before equalizing:
    cosine_similarity(word_to_vec_map["man"], gender) = -0.117110957653
    cosine_similarity(word_to_vec_map["woman"], gender) = 0.356666188463

    cosine similarities after equalizing:
    cosine_similarity(e1, gender) = -0.716572752584
    cosine_similarity(e2, gender) = 0.739659647493

  • 相关阅读:
    JQ和Js获取span标签的内容
    JS获取子节点、父节点和兄弟节点的方法实例总结
    JS实现系统时间(自动)
    CSS font-family 属性
    网页中导入特殊字体@font-face属性详解
    ****HTML模板资源汇总
    ***XAMPP:报错 Unable to load dynamic library的解决方法
    2016年宜昌楼市将迎来史上最激烈一战
    北大资源重磅来宜--宜昌未来商业中心将诞生
    HTML5调用传感器的资料汇总
  • 原文地址:https://www.cnblogs.com/cxq1126/p/13256589.html
Copyright © 2020-2023  润新知