• 卷积神经网络-week1编程题2(卷积神经网络模型的应用:TensorFlow实现手写数字识别)


    导包

     1 import math
     2 import numpy as np
     3 import h5py
     4 import matplotlib.pyplot as plt
     5 import scipy
     6 from PIL import Image
     7 from scipy import ndimage
     8 import tensorflow as tf
     9 from tensorflow.python.framework import ops
    10 from cnn_utils import *
    11 
    12 np.random.seed(1)

    训练数据

    1 # Loading the data (signs)
    2 X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
    3 
    4 X_train = X_train_orig/255.                 #(1080,64,64,3)
    5 X_test = X_test_orig/255.                   #(120,64,64,3)
    6 Y_train = convert_to_one_hot(Y_train_orig, 6).T   #(1080,6)
    7 Y_test = convert_to_one_hot(Y_test_orig, 6).T     #(120,6)

    创建placeholders

     1 def create_placeholders(n_H0, n_W0, n_C0, n_y):
     2     """
     3     Creates the placeholders for the tensorflow session.
     4     
     5     Arguments:
     6     n_H0 -- scalar, height of an input image
     7     n_W0 -- scalar, width of an input image
     8     n_C0 -- scalar, number of channels of the input
     9     n_y -- scalar, number of classes
    10         
    11     Returns:
    12     X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
    13     Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
    14     """
    15 
    16     ### START CODE HERE ### (≈2 lines)
    17     X=tf.placeholder(tf.float32,[None, n_H0, n_W0, n_C0],name='X')
    18     Y=tf.placeholder(tf.float32,[None, n_y],name='Y')
    19     ### END CODE HERE ###
    20     
    21     return X, Y

    初始化参数

     1 def initialize_parameters():
     2     """
     3     Initializes weight parameters to build a neural network with tensorflow. The shapes are:
     4                         W1 : [4, 4, 3, 8]
     5                         W2 : [2, 2, 8, 16]
     6     Returns:
     7     parameters -- a dictionary of tensors containing W1, W2
     8     """
     9     
    10     tf.set_random_seed(1)                              # so that your "random" numbers match ours
    11         
    12     ### START CODE HERE ### (approx. 2 lines of code)
    13     W1=tf.get_variable("W1",[4,4,3,8], initializer=tf.contrib.layers.xavier_initializer(seed=0))
    14     W2=tf.get_variable("W2",[2,2,8,16], initializer=tf.contrib.layers.xavier_initializer(seed=0))
    15     ### END CODE HERE ###
    16 
    17     parameters = {"W1": W1,
    18                   "W2": W2}
    19     return parameters

    前向传播

     1 def forward_propagation(X, parameters):
     2     """
     3     Implements the forward propagation for the model:
     4     CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
     5     
     6     Arguments:
     7     X -- input dataset placeholder, of shape (input size, number of examples)
     8     parameters -- python dictionary containing your parameters "W1", "W2"
     9                   the shapes are given in initialize_parameters
    10 
    11     Returns:
    12     Z3 -- the output of the last LINEAR unit
    13     """
    14     
    15     # Retrieve the parameters from the dictionary "parameters" 
    16     W1 = parameters['W1']
    17     W2 = parameters['W2']
    18     
    19     ### START CODE HERE ###
    20     # CONV2D: stride of 1, padding 'SAME'
    21     Z1=tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME')
    22     # RELU
    23     A1=tf.nn.relu(Z1)
    24     # MAXPOOL: window 8x8, sride 8, padding 'SAME'
    25     P1=tf.nn.max_pool(A1,ksize=[1,8,8,1],strides=[1,8,8,1],padding="SAME")
    26     # CONV2D: filters W2, stride 1, padding 'SAME'
    27     Z2=tf.nn.conv2d(P1,W2,strides=[1,1,1,1],padding="SAME")
    28     # RELU
    29     A2=tf.nn.relu(Z2)
    30     # MAXPOOL: window 4x4, stride 4, padding 'SAME'
    31     P2=tf.nn.max_pool(A2,ksize=[1,4,4,1],strides=[1,4,4,1],padding='SAME')
    32     # FLATTEN
    33     F=tf.contrib.layers.flatten(P2)
    34     # FULLY-CONNECTED without non-linear activation function (not not call softmax).
    35     # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" 
    36     Z3=tf.contrib.layers.fully_connected(F,6,activation_fn=None)
    37     ### END CODE HERE ###
    38 
    39     return Z3

    计算成本

     1 def compute_cost(Z3, Y):
     2     """
     3     Computes the cost
     4     
     5     Arguments:
     6     Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
     7     Y -- "true" labels vector placeholder, same shape as Z3
     8     
     9     Returns:
    10     cost - Tensor of the cost function
    11     """
    12     
    13     ### START CODE HERE ### (1 line of code)
    14     cost=tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y)
    15     cost=tf.reduce_mean(cost)
    16     ### END CODE HERE ###
    17     
    18     return cost

    构建模型

      1 def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
      2           num_epochs = 100, minibatch_size = 64, print_cost = True):
      3     """
      4     Implements a three-layer ConvNet in Tensorflow:
      5     CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
      6     
      7     Arguments:
      8     X_train -- training set, of shape (None, 64, 64, 3)
      9     Y_train -- test set, of shape (None, n_y = 6)
     10     X_test -- training set, of shape (None, 64, 64, 3)
     11     Y_test -- test set, of shape (None, n_y = 6)
     12     learning_rate -- learning rate of the optimization
     13     num_epochs -- number of epochs of the optimization loop
     14     minibatch_size -- size of a minibatch
     15     print_cost -- True to print the cost every 100 epochs
     16     
     17     Returns:
     18     train_accuracy -- real number, accuracy on the train set (X_train)
     19     test_accuracy -- real number, testing accuracy on the test set (X_test)
     20     parameters -- parameters learnt by the model. They can then be used to predict.
     21     """
     22     
     23     ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
     24     tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
     25     seed = 3                                          # to keep results consistent (numpy seed)
     26     (m, n_H0, n_W0, n_C0) = X_train.shape             
     27     n_y = Y_train.shape[1]                            
     28     costs = []                                        # To keep track of the cost
     29     
     30     # Create Placeholders of the correct shape
     31     ### START CODE HERE ### (1 line)
     32     X,Y=create_placeholders(n_H0,n_W0,n_C0,n_y)
     33     ### END CODE HERE ###
     34 
     35     # Initialize parameters
     36     ### START CODE HERE ### (1 line)
     37     parameters=initialize_parameters()
     38     ### END CODE HERE ###
     39     
     40     # Forward propagation: Build the forward propagation in the tensorflow graph
     41     ### START CODE HERE ### (1 line)
     42     Z3=forward_propagation(X,parameters)
     43     ### END CODE HERE ###
     44     
     45     # Cost function: Add cost function to tensorflow graph
     46     ### START CODE HERE ### (1 line)
     47     cost=compute_cost(Z3,Y)
     48     ### END CODE HERE ###
     49     
     50     # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
     51     ### START CODE HERE ### (1 line)
     52     optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
     53     ### END CODE HERE ###
     54     
     55     # Initialize all the variables globally
     56     init = tf.global_variables_initializer()
     57      
     58     # Start the session to compute the tensorflow graph
     59     with tf.Session() as sess:
     60         
     61         # Run the initialization
     62         sess.run(init)
     63         
     64         # Do the training loop
     65         for epoch in range(num_epochs):
     66 
     67             minibatch_cost = 0.
     68             num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
     69             seed = seed + 1
     70             minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
     71 
     72             for minibatch in minibatches:
     73 
     74                 # Select a minibatch
     75                 (minibatch_X, minibatch_Y) = minibatch
     76                 # IMPORTANT: The line that runs the graph on a minibatch.
     77                 # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
     78                 ### START CODE HERE ### (1 line)
     79                 _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
     80                 ### END CODE HERE ###
     81                 
     82                 minibatch_cost += temp_cost / num_minibatches
     83                 
     84             # Print the cost every epoch
     85             if print_cost == True and epoch % 5 == 0:
     86                 print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
     87             if print_cost == True and epoch % 1 == 0:
     88                 costs.append(minibatch_cost)        
     89         
     90         # plot the cost
     91         plt.plot(np.squeeze(costs))
     92         plt.ylabel('cost')
     93         plt.xlabel('iterations (per tens)')
     94         plt.title("Learning rate =" + str(learning_rate))
     95         plt.show()
     96 
     97         # Calculate the correct predictions
     98         predict_op = tf.argmax(Z3, 1)
     99         correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
    100         
    101         # Calculate accuracy on the test set
    102         accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    103         print(accuracy)
    104         train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
    105         test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
    106         print("Train Accuracy:", train_accuracy)
    107         print("Test Accuracy:", test_accuracy)
    108                 
    109         return train_accuracy, test_accuracy, parameters

    调用

    _, _, parameters = model(X_train, Y_train, X_test, Y_test)

    Tensor("Mean_1:0", shape=(), dtype=float32)
    Train Accuracy: 0.868519
    Test Accuracy: 0.733333

    相比之下,卷积神经网络比普通的神经网络有更高的准确率。

  • 相关阅读:
    一种基于HBase韵海量图片存储技术
    八种常用的排序算法
    hibernate session的常用方法解析
    EJB到底是什么,真的那么神秘吗??<转>
    一名实习生在腾讯的感受<很值得一看>
    Jenkins持续集成报告列表显示不正确的问题解决
    Jenkins配置,tomacat版本输出乱码和页面打开报404的问题
    Jenkins部署持续集成远程机节点的问题
    浅析软件测试人员如何对JVM进行内存溢出检测
    python自动化测试,读取excal数据报"'str' object has no attribute 'items'"问题解决
  • 原文地址:https://www.cnblogs.com/cxq1126/p/13153406.html
Copyright © 2020-2023  润新知