1 """ 2 #演示内容:二次回归和线性回归的拟合效果的对比 3 """ 4 print(__doc__) 5 6 import numpy as np 7 import matplotlib.pyplot as plt 8 from sklearn.linear_model import LinearRegression 9 from sklearn.preprocessing import PolynomialFeatures 10 from matplotlib.font_manager import FontProperties 11 font_set = FontProperties(fname=r"c:windowsfontssimsun.ttc", size=20) 12 13 def runplt(): 14 plt.figure()# 定义figure 15 plt.title(u'披萨的价格和直径',fontproperties=font_set) 16 plt.xlabel(u'直径(inch)',fontproperties=font_set) 17 plt.ylabel(u'价格(美元)',fontproperties=font_set) 18 plt.axis([0, 25, 0, 25]) 19 plt.grid(True) 20 return plt 21 22 23 #训练集和测试集数据 24 X_train = [[6], [8], [10], [14], [18]] 25 y_train = [[7], [9], [13], [17.5], [18]] 26 X_test = [[7], [9], [11], [15]] 27 y_test = [[8], [12], [15], [18]] 28 29 #画出横纵坐标以及若干散点图 30 plt1 = runplt() 31 plt1.scatter(X_train, y_train,s=40) 32 33 #给出一些点,并画出线性回归的曲线 34 xx = np.linspace(0, 26, 5) 35 regressor = LinearRegression() 36 regressor.fit(X_train, y_train) 37 yy = regressor.predict(xx.reshape(xx.shape[0], 1)) 38 39 plt.plot(xx, yy, label="linear equation") 40 41 #多项式回归(本例中为二次回归) 42 #首先生成多项式特征 43 quadratic_featurizer = PolynomialFeatures(degree=2) 44 X_train_quadratic = quadratic_featurizer.fit_transform(X_train) 45 46 regressor_quadratic = LinearRegression() 47 regressor_quadratic.fit(X_train_quadratic, y_train) 48 49 #numpy.reshape(重塑)给数组一个新的形状而不改变其数据。在指定的间隔内返回均匀间隔的数字 50 #给出一些点,并画出线性回归的曲线 51 xx = np.linspace(0, 26, 100) 52 print (xx.shape) #(100,) 53 print (xx.shape[0]) #100 54 xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1)) 55 print (xx.reshape(xx.shape[0], 1).shape) #(100,1) 56 57 plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-',label="quadratic equation") 58 plt.legend(loc='upper left') 59 plt.show() 60 61 X_test_quadratic = quadratic_featurizer.transform(X_test) 62 print('linear equation r-squared', regressor.score(X_test, y_test)) 63 print('quadratic equation r-squared', regressor_quadratic.score(X_test_quadratic, y_test))
linear equation r-squared 0.8283656795834485
quadratic equation r-squared 0.9785451046983036
二次回归的拟合效果更好。