• 使用sklearn进行线性回归和二次回归的比较


     1 """
     2 #演示内容:二次回归和线性回归的拟合效果的对比
     3 """
     4 print(__doc__)
     5  
     6 import numpy as np
     7 import matplotlib.pyplot as plt
     8 from sklearn.linear_model import LinearRegression
     9 from sklearn.preprocessing import PolynomialFeatures
    10 from matplotlib.font_manager import FontProperties
    11 font_set = FontProperties(fname=r"c:windowsfontssimsun.ttc", size=20) 
    12  
    13 def runplt():
    14     plt.figure()# 定义figure
    15     plt.title(u'披萨的价格和直径',fontproperties=font_set)
    16     plt.xlabel(u'直径(inch)',fontproperties=font_set)
    17     plt.ylabel(u'价格(美元)',fontproperties=font_set)
    18     plt.axis([0, 25, 0, 25])
    19     plt.grid(True)
    20     return plt
    21  
    22  
    23 #训练集和测试集数据
    24 X_train = [[6], [8], [10], [14], [18]]
    25 y_train = [[7], [9], [13], [17.5], [18]]
    26 X_test = [[7], [9], [11], [15]]
    27 y_test = [[8], [12], [15], [18]]
    28  
    29 #画出横纵坐标以及若干散点图
    30 plt1 = runplt()
    31 plt1.scatter(X_train, y_train,s=40)
    32  
    33 #给出一些点,并画出线性回归的曲线
    34 xx = np.linspace(0, 26, 5)
    35 regressor = LinearRegression()
    36 regressor.fit(X_train, y_train)
    37 yy = regressor.predict(xx.reshape(xx.shape[0], 1))
    38  
    39 plt.plot(xx, yy, label="linear equation")
    40  
    41 #多项式回归(本例中为二次回归)
    42 #首先生成多项式特征
    43 quadratic_featurizer = PolynomialFeatures(degree=2)
    44 X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
    45  
    46 regressor_quadratic = LinearRegression()
    47 regressor_quadratic.fit(X_train_quadratic, y_train)
    48  
    49 #numpy.reshape(重塑)给数组一个新的形状而不改变其数据。在指定的间隔内返回均匀间隔的数字
    50 #给出一些点,并画出线性回归的曲线
    51 xx = np.linspace(0, 26, 100)
    52 print (xx.shape)         #(100,)
    53 print (xx.shape[0])      #100
    54 xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))
    55 print (xx.reshape(xx.shape[0], 1).shape)       #(100,1)
    56  
    57 plt.plot(xx, regressor_quadratic.predict(xx_quadratic), 'r-',label="quadratic equation")
    58 plt.legend(loc='upper left')
    59 plt.show()
    60  
    61 X_test_quadratic = quadratic_featurizer.transform(X_test)
    62 print('linear equation  r-squared', regressor.score(X_test, y_test))
    63 print('quadratic equation r-squared', regressor_quadratic.score(X_test_quadratic, y_test))

    linear equation r-squared 0.8283656795834485
    quadratic equation r-squared 0.9785451046983036

    二次回归的拟合效果更好。

  • 相关阅读:
    三大高级排序
    三大初级排序算法
    MVC的JsonResult用法
    使用dynamic类型改进反射
    正则指引-括号(3)反向引用
    正则指引-括号(2)引用分组
    正则指引-括号(1)
    正则指引-量词demo
    正则指引-字符组demo
    ASP.NET MVC 分部视图
  • 原文地址:https://www.cnblogs.com/cxq1126/p/13042046.html
Copyright © 2020-2023  润新知