• tensorflow2.0——CIFAR100卷积+全连接实战


    import tensorflow as tf
    #   设置相关底层配置
    physical_devices = tf.config.experimental.list_physical_devices('GPU')
    assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
    tf.config.experimental.set_memory_growth(physical_devices[0], True)
    
    def preprocess(x,y):
        x = tf.cast(x,dtype=tf.float32) / 255
        y = tf.cast(y,dtype=tf.int32)
        return x,y
    
    #   ###############数据加载以及处理#############
    (x,y),(x_test,y_test) = tf.keras.datasets.cifar100.load_data()
    #   将y的1维度去掉
    y = tf.squeeze(y,axis=1)
    y_test = tf.squeeze(y_test,axis=1)
    print('x.shape,y.shape,x_test.shape,y_test.shape:')
    print(x.shape,y.shape,x_test.shape,y_test.shape)
    train_db = tf.data.Dataset.from_tensor_slices((x,y))
    train_db = train_db.shuffle(1000).batch(64)
    test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test))
    test_db = test_db.shuffle(1000).batch(200)
    #   打印看下数据的形状
    sample = next(iter(train_db))
    print('sample:',sample[0].shape,sample[1].shape
          ,tf.reduce_min(sample[0]),tf.reduce_max(sample[0]))
    
    if __name__ == '__main__':
        #   卷积网络结构
        conv_layers = [
            #   第一部分(两卷积一池化)
            tf.keras.layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.Conv2D(64, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
            #   第二部分(两卷积一池化)
            tf.keras.layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.Conv2D(128, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
            #   第三部分(两卷积一池化)
            tf.keras.layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.Conv2D(256, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
            #   第四部分(两卷积一池化)
            tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
            #   第五部分(两卷积一池化)
            tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.Conv2D(512, kernel_size=[3, 3], padding='same', activation=tf.nn.relu),
            tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'),
        ]
        #   [b,32,32,3] => [b,1,1,512]  卷积层操作
        conv_net = tf.keras.Sequential(conv_layers)
        conv_net.build(input_shape=[None,32,32,3])
        x = tf.random.normal([4,32,32,3])
        out = conv_net(x)
        print(out.shape)
        #   全连接层操作
        fc_net = tf.keras.Sequential([
            tf.keras.layers.Dense(256,activation=tf.nn.relu),
            tf.keras.layers.Dense(128, activation=tf.nn.relu),
            tf.keras.layers.Dense(100, activation=None)
        ])
        fc_net.build(input_shape=[None,512])
        #   把卷积和全连接层的参数合并 ‘+’可以把两个列表直接合并
        variables = conv_net.trainable_variables + fc_net.trainable_variables
        #   定义优化器
        optimizer = tf.optimizers.Adam(lr=1e-4)
        #   训练
        for epoch in range(50):
            for step,(x,y) in enumerate(train_db):
                with tf.GradientTape() as tape:
                    #   [b,32,32,3] => [b,1,1,512]
                    out = conv_net(x)
                    #   flatten
                    out = tf.reshape(out,[-1,512])
                    #    [b,512] =>[b,100]
                    logits = fc_net(out)
                    #
                    y_onehot = tf.one_hot(y,depth=100)
                    loss = tf.losses.categorical_crossentropy(y_onehot,logits,from_logits=True)
                    loss = tf.reduce_mean(loss)
                grads = tape.gradient(loss,variables)
                optimizer.apply_gradients(zip(grads,variables))
                if step % 100 == 0:
                    print(epoch,step,'loss:',float(loss))
            for x,y in test_db:
                out = conv_net(x)
                out = tf.reshape(out,[-1,512])
                logits = fc_net(out)
                prob = tf.nn.softmax(logits,axis=1)
                pred = tf.argmax(prob,axis=1)
                pred = tf.cast(pred,tf.int32)
                correct = tf.cast(tf.equal(pred,y),dtype=tf.int32)
                correct = tf.reduce_mean(tf.cast(correct,dtype=tf.float32))
            print('acc:',float(correct))
  • 相关阅读:
    [root@py ~]# watch -n 1 ifconfig 求解释
    25 个常用的 Linux iptables 规则
    linux shell 字符串操作(长度,查找,替换)详解
    linux高级网络配置 ip别名,接口绑定
    初始版本控制工具-Git
    详解 TCP 连接的“ 三次握手 ”与“ 四次挥手 ”
    wireshark_users
    wireshark抓包基础步骤及PPPOE拨号抓包过程分析
    ARP原理与ARP攻击
    PPPOE 详解
  • 原文地址:https://www.cnblogs.com/cxhzy/p/13732972.html
Copyright © 2020-2023  润新知