import tensorflow as tf def preprocess(x, y): x = tf.cast(x, dtype=tf.float32) / 255 - 0.5 y = tf.cast(y, dtype=tf.int32) return x, y batchsz = 128 # [50k,32,32,3],[50k,1] (x, y), (x_val, y_val) = tf.keras.datasets.cifar10.load_data() y = tf.one_hot(y, depth=10) # [50k,10] y_val = tf.one_hot(y_val, depth=10) print(x.shape, y.shape) y = tf.squeeze(y) # 去掉为1 的维度 y_val = tf.squeeze(y_val) print('squeeze后:') print(x.shape, y.shape, x.min(), x.max()) train_db = tf.data.Dataset.from_tensor_slices((x, y)) train_db = train_db.map(preprocess).shuffle(1000).batch(batchsz) test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val)) test_db = test_db.map(preprocess).batch(batchsz) sample = next(iter((train_db))) # 测试下数据集shape是否符合要求 batch (128, 32, 32, 3) (128, 10) print('batch:', sample[0].shape, sample[1].shape) # 自定义层 # 代替标准的tf.keras.layers.Dense() class MyDense(tf.keras.layers.Layer): def __init__(self, inp_dim, oup_dim): # 参数为输入的维度和输出维度 super(MyDense, self).__init__() self.kernel = self.add_variable('w', [inp_dim, oup_dim]) # self.bias = self.add_variable('b',[oup_dim]) def call(self, inputs, training=None): # 参数为数据 x = inputs @ self.kernel return x # 自定义网络 class MyNetwork(tf.keras.Model): def __init__(self): super(MyNetwork, self).__init__() self.fc1 = MyDense(32 * 32 * 3, 256) self.fc2 = MyDense(256, 256) self.fc3 = MyDense(256, 256) self.fc4 = MyDense(256, 32) self.fc5 = MyDense(32, 10) def call(self, inputs, training=None, mask=None): ''' :param inputs:[b,32,32,3] :param training: :param mask: :return: ''' # [b,32,32,3] -> [b,32*32*3] x = tf.reshape(inputs,[-1,32*32*3]) # [b,32*32*3] -> [b,256] x = self.fc1(x) x = tf.nn.relu(x) # [b,256] -> [b,128] x = self.fc2(x) x = tf.nn.relu(x) # [b,128] -> [b,64] x = self.fc3(x) x = tf.nn.relu(x) # [b,64] -> [b,32] x = self.fc4(x) x = tf.nn.relu(x) # [b,32] -> [b,10] x = self.fc5(x) # 最后一层不需要激活函数 return x network = MyNetwork() network.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-3), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network.fit(train_db,epochs=13,validation_data=test_db,validation_freq=1) network.evaluate(test_db) network.save_weights('./save_w_model/test1') # 加载仅有参数的model network2 = MyNetwork() network2.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-3), loss=tf.losses.CategoricalCrossentropy(from_logits=True), metrics=['accuracy']) network2.load_weights('./save_w_model/test1') print('加载仅有参数的模型') network2.evaluate(test_db)