• tensorflow2.0——代码实现一元逻辑回归


    import tensorflow as tf
    import numpy as np
    
    x = np.array([1, 2, 3, 4])
    y = np.array([0,0,1,1])
    w = tf.Variable(1.)
    b = tf.Variable(1.)
    sigmodX = 1 / (1 + tf.exp(-(w * x + b)))                                    #   sigmod 函数
    pre_result = tf.round(sigmodX)                                              #   将结果四舍五入
    pre_result2 = tf.where(sigmodX < 0.9,1,0)                                   #   阈值设置
    pre_bool = tf.equal(pre_result,y)                                           #   预测值四舍五入后与标记值对比,判断预测是否正确
    bool_int = tf.cast(pre_bool,tf.float32)                                     #   将bool转化为0,1
    accuary = tf.reduce_mean(bool_int)                                          #   对正确结果数组求平均值就是准确率
    loss = -(y * tf.math.log(sigmodX) + (1 - y)* tf.math.log(1 - sigmodX))      #   每个样本的损失值
    loss_sum = tf.reduce_sum(loss)                                              #   所有样本的损失总和
    loss_mean= tf.reduce_mean(loss)                                             #   所有样本的的平均损失
    print('sigmodX:',sigmodX)
    print('pre_result:',pre_result)
    print('pre_result2:',pre_result2)
    print('pre_bool:',pre_bool)
    print('bool_int:',bool_int)
    print('accuary:',accuary)
    print('loss:',loss)
    print('loss_sum:',loss_sum)
    print('loss_mean:',loss_mean)

  • 相关阅读:
    org.mybatis.spring.mapper.MapperScannerConfigurer$Scanner$1
    LayoutInflater
    发现javax.xml.parsers.SAXParser有bug
    startActivityForResult and onActivityResult
    Sub Thread to update main Thread (UI) 2
    Sub Thread to update main Thread (UI)
    打算听的歌
    会话状态Session
    HttpResponse类
    HttpRequest类
  • 原文地址:https://www.cnblogs.com/cxhzy/p/13433477.html
Copyright © 2020-2023  润新知