题意 给定n个点,任意两点之间可以不连边也可以连边。如果连边的话可以染上m种颜色。
求最后形成的图,是一个带环连通图的方案数。
首先答案是n个点的图减去n个点能形成的树。
n个点能形成的树的方案数比较好求,根据prufer序列可以知道n个点形成的无根树的个数为$n^{n-2}$
那么现在问题变成求n个点形成的连通图的个数。
图有连通和不连通的,那么就是图的总数减去不连通的图的总数。
图的总数很简单,$m^{frac{n(n-1)}{2}}$,那么现在要求不连通的图的总数。
设$f(n)$为$n$个点的不连通的图的总数
$f(n) = ∑f(i) * C(n - 1, i - 1) * f(n - i)$,$i$从$1$到$n-1$。
这是一个卷积的形式,可以分治NTT来求,就可以了。
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i) #define dec(i, a, b) for (int i(a); i >= (b); --i) #define fi first #define se second #define MP make_pair typedef long long LL; const LL G = 106; const LL mod = 152076289; const LL N = 4e4 + 10; int T; int ca = 0; LL x1[N], x2[N]; LL ans; LL n, m; LL f[N], g[N], h[N]; LL c[N], fac[N], ifac[N]; LL Pow(LL a, LL b){ LL ret = 1; while (b){ if (b & 1) ret = (ret * a) % mod; a = (a * a) % mod; b >>= 1; } return ret; } void change (LL *y, int len){ int i, j, k; for (i = 1, j = len / 2; i < len - 1; i++) { if (i < j) swap(y[i], y[j]); k = len / 2; while (j >= k) { j -= k; k /= 2; } if (j < k) j += k; } } void ntt (LL *y, int len, int on) { change (y, len); int id = 0; for(int h = 2; h <= len; h <<= 1) { id++; LL wn = Pow (G, (mod - 1) / (1<<id)); for(int j = 0; j < len; j += h) { LL w = 1; for(int k = j; k < j + h / 2; k++) { LL u = y[k] % mod; LL T = w * (y[k + h / 2] % mod) % mod; y[k] = (u + T) % mod; y[k + h / 2] = ((u - T) % mod + mod) % mod; w = w * wn % mod; } } } if (on == -1){ for (int i = 1; i < len / 2; i++) swap (y[i], y[len - i]); LL inv = Pow(len, mod - 2); for(int i = 0; i < len; i++) y[i] = y[i] % mod * inv % mod; } } void solve(int l, int r){ if (l == r){ f[l] += g[l]; f[l] %= mod; return; } int mid = (l + r) >> 1; solve(l, mid); int len = 1; while (len <= r - l + 1) len <<= 1; rep(i, 0, len - 1) x1[i] = x2[i] = 0; rep(i, l, mid) x1[i - l] = f[i] * ifac[i - 1] % mod; rep(i, 1, r - l) x2[i - 1] = g[i] * ifac[i] % mod; ntt(x1, len, 1); ntt(x2, len, 1); rep(i, 0, len - 1) x1[i] = x1[i] * x2[i] % mod; ntt(x1, len, -1); rep(i, mid + 1, r){ f[i] -= x1[i - l - 1] % mod * fac[i - 1] %mod; (f[i] += mod) %= mod; } solve(mid + 1, r); } int main(){ fac[0] = 1; rep(i, 1, N - 1) fac[i] = fac[i - 1] * i % mod; ifac[N - 1] = Pow(fac[N - 1], mod - 2); dec(i, N - 2, 0) ifac[i] = ifac[i + 1] * (i + 1) % mod; scanf("%d", &T); while (T--){ scanf("%lld%lld", &n, &m); memset(f, 0, sizeof f); rep(i, 1, n) g[i] = Pow(m + 1, 1ll * i * (i - 1) / 2); solve(1, n); ans = (f[n] - Pow(n, n - 2) * Pow(m, n - 1) % mod + mod) % mod; printf ("Case #%d: %lld ", ++ca, ans); } return 0; }