讨论昨天的02
克拉丽丝说不需要树剖可以直接dfs序
我不理解
他就丢给我这题,曰:经典的题目
百度题解一堆,好算知道dfs序是啥意思了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 5e5 + 7;
int l[N], r[N];
struct binaryIndexTree{
int tree[N], n;
inline void init(int n){
this->n = n;
memset(tree, 0, sizeof(tree));
}
inline void add(int k, int num){
for (;k <= n; k += k&-k) tree[k] += num;
}
int sum(int k){
int sum = 0;
for (; k; k -= k&-k) sum += tree[k];
return sum;
}
} T;
struct graph{
struct Edge{
int from, to, nxt;
Edge(){}
Edge(int u, int v, int n):from(u), to(v), nxt(n){}
}edges[N];
int n, E, head[N];
int top;
inline void AddEdge(int f, int t){
edges[++E] = Edge(f, t, head[f]);
head[f] = E;
}
inline void Init(int n){
this -> n = n ; E = -1; top = 0;
for (int i = 0; i <= n; i++) head[i] = -1;
}
void dfs(int u){
l[u] = ++top; T.add(top, 1);
for (int i = head[u]; i != -1; i = edges[i].nxt){
dfs(edges[i].to);
}
r[u] = ++top; T.add(top, -1);
}
} g ;
int main(){
//freopen("in.txt", "r", stdin);
int n, m, u, v;
char ch;
for (; ~scanf("%d", &n);){
g.Init(n);
T.init(n*2);
for (int i = 1; i < n; i++){
scanf("%d%d", &u, &v);
if (u > v) swap(u, v);
g.AddEdge(u, v);
}
g.dfs(1);
scanf("%d", &m);
for (m += n-1; m--;){
getchar();
scanf("%c %d", &ch, &u);
if (ch == 'W') printf("%d
", T.sum(l[u])-1);
else {
scanf("%d", &v);
if (u > v) swap(u, v);
T.add(l[v], -1); T.add(r[v], 1);
}
}
}
return 0;
}
写完之后,换了种实现昨天02的方法
dfs序配合之前写的离线查询
树状数组更加舒服
这里测试了一下效率
一开始在hdu似乎wa和MLE,后来发现fa[N][22]太大了,改成fa[N][18],
fa需要memset,一开始没有memset报WA,后来memset报MLE
改小了,memset才能Accept,也就是说,hdu的评测机,如果没有用到开到的内存,是不会爆MLE的
wa的原因是
for (int i = LCADEP; i >= 0; i--) if (fa[x][i] != fa[y][i]){
x = fa[x][i]; y = fa[y][i];
}
如果前一组数据比后一组大,不memset fa的话,会因为前一组的傻逼值而算错lca
还有
本题原来北邮提供的数据是个巨型菊花图,章鱼哥嫌弃数据太弱了
加强了一波数据放在了EOJ3335上,各位非暴力选手可以试试了
非常艰难的在hdu上用树状数组过了之后,作死想用线段树,然后wa哭了
然而又一次轻松的在EOJ上过了,章鱼哥说EOJ是单组数据评测
ZKW线段树固然常数小,不过还是比树状数组差一点,很接近
下面这段代码,hdu会蜜汁wa,我已经不想管了,想在hdu上A掉,把线段树删了,树状数组保留就好,注释都有,模快化很容易改
#include <map>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1e5 + 7;
typedef long long LL;
int l[N], r[N];
struct gift{
int pos;
LL val;
void read(int id){
scanf("%lld", &val);
pos = id;
}
bool operator < (const gift & b) const {
return val < b.val;
}
} gifts[N];
int ks[N * 2], K, H;
map<LL, int> hashK;
vector<int> whoAsk[N*2];
void insertK(int id, LL k){
if (hashK.find(k) == hashK.end()) {
hashK[k] = ++H;
whoAsk[H].clear();
}
whoAsk[hashK[k]].push_back(id);
}
struct ask{
int u, v, pos;
LL a, b;
vector<LL> ans;
void read(int pos){
this->pos = pos;
ans.clear();
scanf("%d%d%lld%lld", &u, &v, &a, &b);
a--;
ks[++K] = a, ks[++K] = b;
insertK(pos, a);
insertK(pos, b);
}
inline void print(){
printf("%lld", abs(ans[1] - ans[0]));
}
} asks[N];
struct binaryIndexTree{
LL val[N * 2];
int n;
inline void build(int n){
this->n = n;
memset(val, 0, sizeof(val));
}
inline void add(int k, LL num){
for (;k <= n; k += k&-k) val[k] += num;
}
LL sum(int k){
if (k == 0) return 0;
LL sum = 0;
for (; k; k -= k&-k) sum += val[k];
return sum;
}
} TT ;
struct segTree{
LL tree[N * 6];
int M;
inline void build(int n){
M = 1; for(;M<n;) M<<=1; if(M!=1)M--;
memset(tree, sizeof(tree), 0);
}
void add(int t, LL x){
for (tree[t+=M]+=x, t>>=1; t; t>>=1){
tree[t] = tree[t<<1] + tree[t<<1^1];
}
}
LL sum(int l, int r){
if (l > r || r == 0) return 0;
LL ans = 0;
for (l+=M-1,r+=M+1; l^r^1; l>>=1,r>>=1){
if (~l&1) ans += tree[l^1];
if ( r&1) ans += tree[r^1];
}
return ans;
}
} T;
struct graph{
struct Edge{
int from, to, nxt;
Edge(){}
Edge(int u, int v, int n):from(u), to(v), nxt(n){}
} edges[N * 2];
static const int LCADEP = 17;
int n, E, head[N];
int top, dep[N], fa[N][LCADEP + 1];
inline void AddEdge(int f, int t){
edges[++E] = Edge(f, t, head[f]);
head[f] = E;
}
inline void Init(int n){
this -> n = n ; E = -1; top = 0; dep[0] = 0;
for (int i = 0; i <= n; i++) head[i] = -1;
memset(fa, 0, sizeof(fa));
}
void dfs(int u, int pre){
l[u] = ++top;
//printf("l[%d] = %d
", u, top);
fa[u][0] = pre;
dep[u] = dep[pre] + 1;
for (int i = 1; i <= LCADEP; i++){
if (dep[u] < (1<<i)) break;
fa[u][i] = fa[fa[u][i-1]][i-1];
}
for (int i = head[u]; i != -1; i = edges[i].nxt){
if (edges[i].to != pre) dfs(edges[i].to, u);
}
r[u] = ++top;
//printf("r[%d] = %d
", u, top);
}
int lca(int x, int y){
if (dep[x] < dep[y]) swap(x,y);
int t = dep[x] - dep[y];
for (int i = 0; i <= LCADEP; i++) if ((1<<i) & t) x = fa[x][i];
for (int i = LCADEP; i >= 0; i--) if (fa[x][i] != fa[y][i]){
x = fa[x][i]; y = fa[y][i];
}
return x==y ? x : fa[x][0];
}
void solve(ask &a){
int u = a.u, v = a.v;
int f = lca(u, v);
LL ans = T.sum(1, l[u]) + T.sum(1, l[v]) - T.sum(1, l[f]) - T.sum(1, l[fa[f][0]]);
//LL ans = T.sum(l[u]) + T.sum(l[v]) - T.sum(l[f]) - T.sum(l[fa[f][0]]);
a.ans.push_back(ans);
}
} g ;
int main () {
//freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
int n, m, u, v;
for (; cin >> n >> m;) {
for(int i = 1; i <= n; i++) gifts[i].read(i);
sort(gifts + 1, gifts + n+1);
g.Init(n);
for(int i = 0; i < n - 1; i++) {
scanf("%d%d", &u, &v);
g.AddEdge(u, v);
g.AddEdge(v, u);
}
g.dfs(1, 0);
T.build(n*2);
K = 0, H = 0;
hashK.clear();
for (int i = 1; i <= m; i++) asks[i].read(i);
sort(ks + 1, ks + K+1);
K = unique(ks + 1, ks + K+1) - (ks + 1);
int cur = 1;
for (int i = 1; i <= K; i++){
//printf("ks[%d] = %d
", i, ks[i]);
for (int &j = cur; j <= n; j++){
if (gifts[j].val > ks[i]) break;
//printf("gifts[%d].val = %d, pos = %d, [%d, %d]
", j, gifts[j].val, gifts[j].pos, l[gifts[j].pos], r[gifts[j].pos]);
T.add(l[gifts[j].pos], gifts[j].val);
T.add(r[gifts[j].pos],-gifts[j].val);
}
int kk = hashK[ks[i]];
for (int j = 0; j < whoAsk[kk].size(); j++){
ask &a = asks[whoAsk[kk][j]];
g.solve(a);
}
}
for (int i = 1; i <= m; i++){
asks[i].print();
putchar(i==m ? '
' : ' ');
}
}
return 0;
}