刘汝佳紫书上的题
题意:给n个点m条边的有向加权图,求1->n的两条不重复的路径,使sum权最小
(不重复的路径是指,两条路径没有公共点)
思路见图
用的紫书371页的模板
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 20007;
const int INF=0x3f3f3f3f;
struct MCMF{
struct Edge{
int from,to,cap,flow,cost;
Edge(int x,int y,int z,int u,int v){
from=x;to=y;cap=z;flow=u;cost=v;
}
};
vector <Edge> edges;
vector <int > G[N];
int n,m,inq[N],d[N],p[N],a[N];
inline void Init(int n){
this->n = n;
edges.clear();
for (int i=1;i<=n;i++)G[i].clear();
}
inline void AddEdge(int f,int t,int c,int w){
edges.push_back(Edge(f,t,c,0, w));
edges.push_back(Edge(t,f,0,0,-w));
int top = edges.size();
G[f].push_back(top-2);
G[t].push_back(top-1);
}
bool spfa(int s,int t,int flow,LL &cost){
for (int i=0;i<=n;i++)d[i]=INF;
memset(inq,0,sizeof(inq));
d[s]=0;inq[s]=1;p[s]=0;a[s]=INF;
queue<int>Q;Q.push(s);
for (;!Q.empty();){
int u =Q.front();Q.pop();inq[u]=0;
for (int i=0;i<G[u].size();i++){
Edge &e = edges[G[u][i]];
if (e.cap<=e.flow||d[e.to]<=d[u]+e.cost)continue;
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u],e.cap-e.flow);
if (!inq[e.to]){Q.push(e.to);inq[e.to]=1;}
}
}
if (d[t]==INF)return 0;//false
flow += a[t];
cost +=(LL)d[t]*(LL)a[t];
for (int u=t;u!=s;u=edges[p[u]].from){
edges[p[u] ].flow += a[t];
edges[p[u]^1].flow -= a[t];
}
return 1;//true
}
//需要保证初始网络中没有负权
int mcmf(int s,int t,LL &cost){
int flow =0; cost = 0;
for (;spfa(s,t,flow,cost););
return flow;
}//MinCostMaxFlow
}g;
int main(){
//freopen("in.txt","r",stdin);
int x,y,z,n,m;
for (LL ans;~scanf("%d%d",&n,&m);){
g.Init(n<<1);//begin build gragh
for (int i=1;i<=n;i++){
if(i==1||i==n)g.AddEdge(i,i+n,2,0);
else g.AddEdge(i,i+n,1,0);
}
for (;m--;){
scanf("%d%d%d",&x,&y,&z);
g.AddEdge(x+n,y,1,z);
} //end Build gragh
int flow = g.mcmf(1,n<<1,ans);
printf("%lld
",ans);
}
return 0;
}