• poj2886 线段树单点修改+反素数(喵?)


    题意:

    n个熊孩子每个人有个数字a[i],首先k号熊孩子出圈,然后第k+a[i]个熊孩子出圈,一个环,可以绕很多圈,如果a[i]为正则顺时针数,反之逆时针,相当于一个变体的约瑟夫游戏,第i个出圈的熊孩子,有f[i]的得分,f[i]为i的因子个数

    反正没人看的讲解:

    分为两个部分:线段树模拟约瑟夫游戏+寻找1到n范围内因数数量最多的那个ans,约瑟夫游戏只要做到第ans个人出圈就好了

    区间和的线段树,每个叶子节点为1,代表一个熊孩子,出圈置为0,

    至于因子数量,my math is very poor,所以我搜了题解,看见标题里一群反素数,于是顺势百度了反素数,搜到反素数深度分析,第三道题正好就是这玩意,于是复制粘贴之(划掉),虽然到现在还不知道反素数是个什么玩意

    似乎搜到的题解都是打表来解决的因数个数问题,

    我真的debug了10个小时,心累

    code

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    typedef long long LL;
    const int N = 1e7 + 7;
    const LL INF = ~0LL;
    const int prime[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
    
    struct child{
        char name[11];
        int val;
        inline void read(){scanf("%s %d
    ", name, &val);}
    }arr[N];
    
    LL maxNum, ansPos, n;
    
    void dfs(int dep, LL tmp, int num){
        if (dep >= 16) return;
        if (num > maxNum){
            maxNum = num;
            ansPos = tmp;
        }
        if (num == maxNum && ansPos > tmp) ansPos = tmp;
        for (int i = 1; i < 63; i++){
            if (n / prime[dep] < tmp) break;
            dfs(dep+1, tmp *= prime[dep], num*(i+1));
        }
    }
    
    struct segmentTree
    {
        #define lc (rt<<1)
        #define rc (rt<<1^1)
        int val[N], M;
    
        inline void build(int n){
            M = 1; while(M<n) M<<=1; M--;
            for (int leaf = 1+M; leaf <= n+M; leaf++) val[leaf] = 1;
            for (int leaf = n+1+M; leaf <= (M<<1^1); leaf++) val[leaf] = 0;
            for (int rt = M; rt >= 1; rt--) val[rt] = val[lc] + val[rc];
        }
    
        inline int update(int pos, int rt){
            val[rt]--;
            if (rt > M) return rt - M;
            if (val[lc] >= pos) return update(pos, lc);
            else return update(pos-val[lc], rc);
        }
    } T;
    
    int main(){
        //freopen("in.txt", "r", stdin);
        int &mod = T.val[1];
        for (LL k; ~scanf("%lld%lld
    ", &n, &k);){
            for (int i = 1; i <= n; i++) arr[i].read();
            T.build(n);
            ansPos = INF;
            maxNum = 0;
            dfs(0, 1, 1);
    
            int pos = 0;
            for (int i = 1; i <= ansPos; i++){
                pos = T.update(k, 1);
                //printf("k = %lld, pos = %d, mod = %d
    ", k, pos, mod);
                if (mod == 0) break;
                if (arr[pos].val>0) k = (k-1 + arr[pos].val) % mod;
                else k = ((k + arr[pos].val) % mod + mod) % mod;
                if (k == 0) k = mod;
            }
            printf("%s %lld
    ", arr[pos].name, maxNum);
        }
        return 0;
    }
  • 相关阅读:
    linux process management
    intel edison with grove lcd
    ODBC、OLEDB和ADO关系
    在线并使用数据库来推断在线
    大约laravel错误的解决方案
    cocos2dx-3.1加入cocosStudio参考库 libCocosStudio
    【甘道夫】基于Mahout0.9+CDH5.2执行分布式ItemCF推荐算法
    格式字符串分配stl::string
    希望开发一个指针的元素
    [Now] Configure secrets and environment variables with Zeit’s Now
  • 原文地址:https://www.cnblogs.com/cww97/p/12349360.html
Copyright © 2020-2023  润新知