• 【赛后补题】ccpc2107秦皇岛H题


    ZOJ上可以补

    赛场上偷听到了隔壁的匈牙利

    然后一波操作,未曾想匈牙利之后操作如此复杂

    毕竟金牌题,技不如人,甘拜下风

    思路: 奇数和偶数分别算作一个集合,二分图构造完毕

    烦人的就是那个1,1+1是质数,1+2也是质数,先1内部考虑,然后1+2

    (写这段话的时候发现我想错了)

    NONONO应该先考虑1+2,再考虑1+1

    zoj数据没那么严,不想改了,各位随意

    ———-吉老师纠正

    1+2的在二分图中已经判断了,太好了,我又写了一堆冗余代码,

    wtf()

    这里写图片描述

    所以剩下的就是,很多很多个1和一堆单身狗们(该说法来自匈牙利算法趣写

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 3e3 + 7;
    //-------------------------prime--------------------------------
    const int PRIME_N = 2e6 + 7;
    int prime[PRIME_N], primesize;
    bool isprime[PRIME_N + 7];
    void getprime(int listsize){
        memset(isprime, 1, sizeof(isprime));
        isprime[1] = false;
        primesize = 0;
        for(int i=2; i < listsize; i++){
            if(isprime[i]) prime[++primesize]=i;
            for(int j = 1; j <= primesize && i*prime[j] < listsize; j++){
                isprime[i*prime[j]] = false;
                if(i%prime[j] == 0) break;
            }
        }
    }
    //-------------------------hungary-------------------------------
    bool marry[N], adore[N];
    int arr[N], boy[N], gir[N], B, G;
    struct Hungary{
        vector <int> G[N];
        bool used[N];// main里面记得memset
        int girl[N], n;
        inline void init(int _n){
            n = _n;
            for (int i = 0; i <= n; i++) G[i].clear();
        }
        inline void addEdge(const int &u, const int &v){
            G[u].push_back(v);
        }
    
        bool Find(int x){
            for (int i = 0; i < G[x].size(); i++){    //扫描每个妹子
                int j = G[x][i];
                if (used[j]) continue;
                // 如果有暧昧并且还没有标记过
                // (这里标记的意思是这次查找曾试图改变过该妹子的归属问题,
                // 是没有成功,所以就不用瞎费工夫了)
                used[j] = 1;
                if (girl[j] == 0 || Find(girl[j])) {
                    //名花无主或者能腾出个位置来,这里使用递归
                    girl[j] = x;
                    marry[boy[x]] = marry[gir[j]] = true; // this problem
                    return true;
                }
            }
            return false;
        }
    
        inline int hungary(const int &n){
            int all = 0;
            memset(girl, 0, sizeof girl);
            memset(marry, false, sizeof marry); // this problem
            for (int i = 1; i <= n; i++) {
                memset(used, 0, sizeof(used)); //这个在每一步中清空
                if (Find(i)) all += 1;
            }
            return all;
        }
    } hg;
    
    inline int wtf(const int &n, const int &B, const int &k){
        int mat = hg.hungary(B);
        //printf("mat = %d
    ", mat);
        if (mat >= k) return k * 2;
        int cnt1 = 0, idx = n; // number of one
        for (int i = n; i >= 1; i--){
            if (arr[i] != 1) {idx = i; break;}
            if ((!marry[i])) cnt1++;
            marry[i] = true;
        }
        //printf("cnt1 = %d
    ", cnt1);
        mat += cnt1 >> 1; // 剩下的1
        if (mat >= k) return k*2;
        int left = cnt1 & 1; // 单身狗们
        for (int i = 1; i <= idx; i++){
            left += (!marry[i]) & adore[i];
        }
        if (mat + left <= k) return mat*2+left;
        return mat*2 + (k - mat);
    }
    
    int main(){
        //freopen("in.txt", "r", stdin);
        getprime(2e6 + 7);
        int _;
        scanf("%d", &_);
        for (int n, k; _--;) {
            scanf("%d%d", &n, &k);
            for (int i = 1; i <= n; i++) scanf("%d", &arr[i]);
            sort(arr + 1, arr + n+1, greater<int>());
            B = G = 0;
            for (int i = 1; i <= n; i++){
                if (arr[i] & 1) boy[++B] = i;
                else gir[++G] = i;
            }
            hg.init(B);
            memset(adore, false, sizeof adore);
            for (int i = 1; i <= B; i++){
                for (int j = 1; j <= G; j++){
                    int num = arr[boy[i]] + arr[gir[j]];
                    if (isprime[num]) {
                        hg.addEdge(i, j);
                        adore[boy[i]] = adore[gir[j]] = true;
                    }
                }
            }
            int ans = wtf(n, B, k);
            printf("%d
    ", ans);
        }
        return 0;
    }

    吉老师好帅,,,

    这里写图片描述

    网络流跑二分图会快很多,

    150ms

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 3e3 + 7;
    const int INF=0x3f3f3f3f;
    //-------------------------prime--------------------------------
    const int PRIME_N = 2e6 + 7;
    int prime[PRIME_N], primesize;
    bool isprime[PRIME_N + 7];
    void getprime(int sz){
        memset(isprime, 1, sizeof(isprime));
        isprime[1] = false;
        primesize = 0;
        for (int i = 2; i < sz; i++){
            if (isprime[i]) prime[++primesize]=i;
            for (int j = 1; j <= primesize && i*prime[j] < sz; j++){
                isprime[i*prime[j]] = false;
                if (i % prime[j] == 0) break;
            }
        }
    }
    bool marry[N], adore[N];
    int arr[N], boy[N], gir[N], B, G;
    //------------------------Dinic-maxFlow--------------------------
    struct gragh{
        struct Edge{
            int from, to, cap, flow;
            Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
        };
        int n, s, t;
        vector <Edge> edges;
        vector < int> G[N]; //gragh
        bool vis[N]; //use when bfs
        int d[N],cur[N];//dist,now edge,use in dfs
    
        inline void init(int _n, int _s, int _t){
            n = _n; s = _s, t = _t; edges.clear();
            for (int i = 0; i <= n; i++) G[i].clear();
        }
    
        inline void addEdge(int from, int to, int cap){
            edges.push_back(Edge(from,to,cap,0));
            edges.push_back(Edge(to,from, 0 ,0));
            int top = edges.size();
            G[from].push_back(top-2);
            G[ to ].push_back(top-1);
        }
    
        inline bool BFS(){
            memset(vis, 0, sizeof(vis));
            queue <int> Q;
            d[s]=0;vis[s]=1;
            for (Q.push(s); !Q.empty();){
                int x = Q.front(); Q.pop();
                for (int i = 0; i < G[x].size(); i++){
                    Edge &e = edges[G[x][i]];
                    if (vis[e.to] || e.cap <= e.flow)continue;
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
            return vis[t];
        }
    
        inline int DFS(const int& x,int a){
            //printf("dfs:%d,%d
    ",x,a);
            if (x==t||a==0){return a;}
            int flow = 0, f;
            for (int& i = cur[x]; i < G[x].size(); i++){
                Edge& e = edges[G[x][i]];
                if (d[x] + 1 != d[e.to]) continue;
                if ((f=DFS(e.to,min(a,e.cap-e.flow)))<=0)continue;
                e.flow += f;
                edges[G[x][i]^1].flow -= f;//反向边
                flow+=f; a-=f;
                marry[x] = marry[e.to] = true;
                if (a==0) break;
            }
            return flow;
        }
    
        inline int maxFlow(){return maxFlow(s,t);}
        inline int maxFlow(const int& s, const int& t){
            //if (edges.size() > N*N>>1) return 233;
            int flow = 0;
            while (BFS()){
                memset(cur, 0, sizeof(cur));
                int f = DFS(s, INF);
                flow += f ;
            }
            return flow;
        }
    } g;
    
    inline int wtf(const int &n, const int &B, const int &k){
        memset(marry, false, sizeof marry);
        int mat = g.maxFlow();
        //printf("mat = %d
    ", mat);
        if (mat >= k) return k * 2;
        int cnt1 = 0, idx = n; // number of one
        for (int i = n; i >= 1; i--){
            if (arr[i] != 1) {idx = i; break;}
            if ((!marry[i])) cnt1++;
            marry[i] = true;
        }
        //printf("cnt1 = %d
    ", cnt1);
        mat += cnt1 >> 1; // 剩下的1
        if (mat >= k) return k*2;
        int left = cnt1 & 1; // 单身狗们
        for (int i = 1; i <= idx; i++){
            left += (!marry[i]) & adore[i];
        }
        if (mat + left <= k) return mat*2+left;
        return mat*2 + (k - mat);
    }
    
    int main(){
        //freopen("in.txt", "r", stdin);
        getprime(2e6 + 7);
        int _;
        scanf("%d", &_);
        for (int n, k; _--;) {
            scanf("%d%d", &n, &k);
            for (int i = 1; i <= n; i++) scanf("%d", &arr[i]);
            sort(arr + 1, arr + n + 1, greater<int>());
            B = G = 0;
            g.init(n + 1, 0, n + 1);
            for (int i = 1; i <= n; i++){
                if (arr[i] & 1) {
                    boy[++B] = i;
                    g.addEdge(0, i, 1);
                } else {
                    gir[++G] = i;
                    g.addEdge(i, n+1, 1);
                }
            }
            memset(adore, false, sizeof adore);
            for (int i = 1; i <= B; i++){
                for (int j = 1; j <= G; j++){
                    int num = arr[boy[i]] + arr[gir[j]];
                    if (isprime[num]) {
                        g.addEdge(boy[i], gir[j], 1);
                        adore[boy[i]] = adore[gir[j]] = true;
                    }
                }
            }
            int ans = wtf(n, B, k);
            printf("%d
    ", ans);
        }
        return 0;
    }

    真的是佛了

    匈牙利过了,拿前向星版的dinic死活re和wa,找了一年前的vector的dinic板子直接过了,一行一行对,没办法,拿vector的板子现场该前向星,还是狂wa

    没错,下面这段代码wa到死,睿智了

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int N = 3e3 + 7;
    const int INF = 0x3f3f3f3f;
    //-------------------------prime--------------------------------
    const int PRIME_N = 2e6 + 7;
    int prime[PRIME_N], primesize;
    bool isprime[PRIME_N + 7];
    void getprime(int listsize){
        memset(isprime, 1, sizeof(isprime));
        isprime[1] = false;
        primesize = 0;
        for (int i = 2; i < listsize; i++){
            if (isprime[i]) prime[++primesize]=i;
            for (int j = 1; j <= primesize && i*prime[j] < listsize; j++){
                isprime[i*prime[j]] = false;
                if (i % prime[j] == 0) break;
            }
        }
    }
    bool marry[N], adore[N];
    int arr[N], boy[N], gir[N], B, G;
    //------------------------Dinic-maxFlow--------------------------
    struct Dinic{
        struct Edge{
            int from, to, cap, flow, nxt;
            Edge(){}
            Edge(int u,int v,int c,int f, int n):from(u),to(v),cap(c),flow(f),nxt(n){}
        } edges[N*N>>1];
        int n, s, t, E, head[N];
        bool vis[N]; //use when bfs
        int d[N], cur[N]; //dist, now edge, use in dfs
    
        inline void init(int _n, int _s, int _t){
            n = _n; s = _s, t = _t; E = 0;
            for (int i = 0; i <= n; i++) head[i] = -1;
        }
    
        inline void addEdge(int f, int t, int c){
            edges[E] = Edge(f, t, c, 0, head[f]);
            head[f] = E++;
            edges[E] = Edge(t, f, 0, 0, head[t]);
            head[t] = E++;
        }
    
        inline bool BFS(){
            memset(vis, 0, sizeof(vis));
            queue <int> Q;
            d[s] = 0; vis[s] = 1;
            for (Q.push(s); !Q.empty();){
                int x = Q.front(); Q.pop();
                for (int i = head[x]; ~i; i = edges[i].nxt){
                    Edge &e = edges[i];
                    if (vis[e.to] || e.cap <= e.flow) continue;
                    vis[e.to] = 1;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
            return vis[t];
        }
    
        inline int DFS(const int& x, int a){
            //printf("dfs:%d,%d
    ",x,a);
            if (x == t || a == 0) return a;
            int flow = 0, f;
            for (int& i = cur[x]; ~i; i = edges[i].nxt){
                Edge& e = edges[i];
                if (d[x] + 1 != d[e.to]) continue;
                if ((f = DFS(e.to,min(a,e.cap-e.flow))) <= 0)continue;
                e.flow += f;
                edges[i^1].flow-=f;//反向边
                flow+=f; a-=f;
                marry[x] = marry[e.to] = true;
                if (a==0) break;
            }
            return flow;
        }
    
        inline int maxFlow(){return maxFlow(s,t);}
        inline int maxFlow(const int& s, const int& t){
            int flow = 0;
            while (BFS()){
                for (int i = 0; i <= n; i++) cur[i] = head[i];
                int f = DFS(s, INF);
                flow += f ;
            }
            return flow;
        }
    } g;
    
    inline int wtf(const int &n, const int &B, const int &k){
        memset(marry, false, sizeof marry);
        int mat = g.maxFlow();
        //printf("mat = %d
    ", mat);
        if (mat >= k) return k * 2;
        int cnt1 = 0, idx = n; // number of one
        for (int i = n; i >= 1; i--){
            if (arr[i] != 1) {idx = i; break;}
            if ((!marry[i])) cnt1++;
            marry[i] = true;
        }
        //printf("cnt1 = %d
    ", cnt1);
        mat += cnt1 >> 1; // 剩下的1
        if (mat >= k) return k*2;
        int left = cnt1 & 1; // 单身狗们
        for (int i = 1; i <= idx; i++){
            left += (!marry[i]) & adore[i];
        }
        if (mat + left <= k) return mat*2+left;
        return mat*2 + (k - mat);
    }
    
    int main(){
        //freopen("in.txt", "r", stdin);
        getprime(2e6 + 7);
        int _;
        scanf("%d", &_);
        for (int n, k; _--;) {
            scanf("%d%d", &n, &k);
            for (int i = 1; i <= n; i++) scanf("%d", &arr[i]);
            sort(arr + 1, arr + n + 1, greater<int>());
            B = G = 0;
            g.init(n + 1, 0, n + 1);
            for (int i = 1; i <= n; i++){
                if (arr[i] & 1) {
                    boy[++B] = i;
                    g.addEdge(0, i, 1);
                } else {
                    gir[++G] = i;
                    g.addEdge(i, n+1, 1);
                }
            }
            memset(adore, false, sizeof adore);
            for (int i = 1; i <= B; i++){
                for (int j = 1; j <= G; j++){
                    int num = arr[boy[i]] + arr[gir[j]];
                    if (isprime[num]) {
                        g.addEdge(boy[i], gir[j], 1);
                        adore[boy[i]] = adore[gir[j]] = true;
                    }
                }
            }
            int ans = wtf(n, B, k);
            printf("%d
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    论JS函数传参时:值传递与引用传递的区别
    关于 rem
    致——自己
    用CSS3写的钟表
    HTML标签marquee实现滚动效果
    手机号截取
    CSS3绘制环形进度条
    限制内容长度(CSS,jQuery)
    移动web开发中遇到的一些问题收纳
    移动平台中 meta 标签的使用
  • 原文地址:https://www.cnblogs.com/cww97/p/12349336.html
Copyright © 2020-2023  润新知