什么是MySQL?
MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。在Java企业级开发中非常常用,因为 MySQL 是开源免费的,并且方便扩展。
数据库三大范式是什么
- 第一范式:属性不可分割,每个列都不可以再拆分。
- 第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。
- 第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。
mysql有关权限的表都有哪几个
MySQL服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。下面分别介绍一下这些表的结构和内容:
- user权限表:记录允许连接到服务器的用户帐号信息,里面的权限是全局级的。
- db权限表:记录各个帐号在各个数据库上的操作权限。
- table_priv权限表:记录数据表级的操作权限。
- columns_priv权限表:记录数据列级的操作权限。
- host权限表:配合db权限表对给定主机上数据库级操作权限作更细致的控制。这个权限表不受GRANT和REVOKE语句的影响
数据类型
mysql有哪些数据类型
分类 | 类型名称 | 说明 |
---|---|---|
整数类型 | tinyInt | 很小的整数(8位二进制) |
smallint | 小的整数(16位二进制) | |
mediumint | 中等大小的整数(24位二进制) | |
int(integer) | 普通大小的整数(32位二进制) | |
小数类型 | float | 单精度浮点数 |
double | 双精度浮点数 | |
decimal(m,d) 使用金钱类型 | 压缩严格的定点数 | |
日期类型 | year | YYYY 1901~2155 |
time | HH:MM:SS -838:59:59~838:59:59 | |
date | YYYY-MM-DD 1000-01-01~9999-12-3 | |
datetime | YYYY-MM-DD HH:MM:SS 1000-01-01 00:00:00~ 9999-12-31 23:59:59 | |
timestamp | YYYY-MM-DD HH:MM:SS 19700101 00:00:01 UTC~2038-01-19 03:14:07UTC | |
文本、二进制类型 | CHAR(M) | M为0~255之间的整数 |
VARCHAR(M) | M为0~65535之间的整数 | |
TINYBLOB | 允许长度0~255字节 | |
BLOB | 允许长度0~65535字节 | |
MEDIUMBLOB | 允许长度0~167772150字节 | |
LONGBLOB | 允许长度0~4294967295字节 | |
TINYTEXT | 允许长度0~255字节 | |
TEXT | 允许长度0~65535字节 | |
MEDIUMTEXT | 允许长度0~167772150字节 | |
LONGTEXT | 允许长度0~4294967295字节 | |
VARBINARY(M) | 允许长度0~M个字节的变长字节字符串 | |
BINARY(M) | 允许长度0~M个字节的定长字节字符串 |
-
1、整数类型,包括TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT,分别表示1字节、2字节、3字节、4字节、8字节整数。任何整数类型都可以加上UNSIGNED属性,表示数据是无符号的,即非负整数。
长度:整数类型可以被指定长度,例如:INT(11)表示长度为11的INT类型。长度在大多数场景是没有意义的,它不会限制值的合法范围,只会影响显示字符的个数,而且需要和UNSIGNED ZEROFILL属性配合使用才有意义。
例子,假定类型设定为INT(5),属性为UNSIGNED ZEROFILL,如果用户插入的数据为12的话,那么数据库实际存储数据为00012。 -
2、实数类型,包括FLOAT、DOUBLE、DECIMAL。
DECIMAL可以用于存储比BIGINT还大的整型,能存储精确的小数。
而FLOAT和DOUBLE是有取值范围的,并支持使用标准的浮点进行近似计算。
计算时FLOAT和DOUBLE相比DECIMAL效率更高一些,DECIMAL你可以理解成是用字符串进行处理。 -
3、字符串类型,包括VARCHAR、CHAR、TEXT、BLOB
VARCHAR用于存储可变长字符串,它比定长类型更节省空间。
VARCHAR使用额外1或2个字节存储字符串长度。列长度小于255字节时,使用1字节表示,否则使用2字节表示。
VARCHAR存储的内容超出设置的长度时,内容会被截断。
CHAR是定长的,根据定义的字符串长度分配足够的空间。
CHAR会根据需要使用空格进行填充方便比较。
CHAR适合存储很短的字符串,或者所有值都接近同一个长度。
CHAR存储的内容超出设置的长度时,内容同样会被截断。
使用策略:
对于经常变更的数据来说,CHAR比VARCHAR更好,因为CHAR不容易产生碎片。
对于非常短的列,CHAR比VARCHAR在存储空间上更有效率。
使用时要注意只分配需要的空间,更长的列排序时会消耗更多内存。
尽量避免使用TEXT/BLOB类型,查询时会使用临时表,导致严重的性能开销。
-
4、枚举类型(ENUM),把不重复的数据存储为一个预定义的集合。
有时可以使用ENUM代替常用的字符串类型。
ENUM存储非常紧凑,会把列表值压缩到一个或两个字节。
ENUM在内部存储时,其实存的是整数。
尽量避免使用数字作为ENUM枚举的常量,因为容易混乱。
排序是按照内部存储的整数 -
5、日期和时间类型,尽量使用timestamp,空间效率高于datetime,
用整数保存时间戳通常不方便处理。
如果需要存储微妙,可以使用bigint存储。
看到这里,这道真题是不是就比较容易回答了。
引擎
MySQL存储引擎MyISAM与InnoDB区别
存储引擎Storage engine:MySQL中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。
常用的存储引擎有以下:
- Innodb引擎:Innodb引擎提供了对数据库ACID事务的支持。并且还提供了行级锁和外键的约束。它的设计的目标就是处理大数据容量的数据库系统。
- MyIASM引擎(原本Mysql的默认引擎):不提供事务的支持,也不支持行级锁和外键。
- MEMORY引擎:所有的数据都在内存中,数据的处理速度快,但是安全性不高。
MyISAM与InnoDB区别
Innodb | MyISAM | |
---|---|---|
存储结构 | 每张表被存放在三个文件:frm-表格定义、MYD(MYData)-数据文件、MYI(MYIndex)-索引文件 | 所有的表都保存在同一个数据文件中(也可能是多个文件,或者是独立的表空间文件),InnoDB表的大小只受限于操作系统文件的大小,一般为2GB |
存储空间 | MyISAM可被压缩,存储空间较小 | InnoDB的表需要更多的内存和存储,它会在主内存中建立其专用的缓冲池用于高速缓冲数据和索引 |
可移植性、备份及恢复 | 由于MyISAM的数据是以文件的形式存储,所以在跨平台的数据转移中会很方便。在备份和恢复时可单独针对某个表进行操作 | 免费的方案可以是拷贝数据文件、备份 binlog,或者用 mysqldump,在数据量达到几十G的时候就相对痛苦了 |
文件格式 | 数据和索引是分别存储的,数据.MYD,索引.MYI | 数据和索引是集中存储的,.ibd |
记录存储顺序 | 按记录插入顺序保存 | 按主键大小有序插入 |
外键 | 不支持 | 支持 |
事务 | 不支持 | 支持 |
锁支持(锁是避免资源争用的一个机制,MySQL锁对用户几乎是透明的) | 表级锁定 | 行级锁定、表级锁定,锁定力度小并发能力高 |
SELECT | MyISAM更优 | |
INSERT、UPDATE、DELETE | InnoDB更优 | |
select count(*) | myisam更快,因为myisam内部维护了一个计数器,可以直接调取。 | |
索引的实现方式 | B+树索引,myisam 是堆表 | B+树索引,Innodb 是索引组织表 |
哈希索引 | 不支持 | 支持 |
全文索引 | 支持 | 不支持 |
InnoDB引擎的4大特性
-
插入缓冲(insert buffer)
-
二次写(double write)
-
自适应哈希索引(ahi)
-
预读(read ahead)
百万级别或以上的数据如何删除
关于索引:由于索引需要额外的维护成本,因为索引文件是单独存在的文件,所以当我们对数据的增加,修改,删除,都会产生额外的对索引文件的操作,这些操作需要消耗额外的IO,会降低增/改/删的执行效率。所以,在我们删除数据库百万级别数据的时候,查询MySQL官方手册得知删除数据的速度和创建的索引数量是成正比的。
- 所以我们想要删除百万数据的时候可以先删除索引(此时大概耗时三分多钟)
- 然后删除其中无用数据(此过程需要不到两分钟)
- 删除完成后重新创建索引(此时数据较少了)创建索引也非常快,约十分钟左右。
- 与之前的直接删除绝对是要快速很多,更别说万一删除中断,一切删除会回滚。那更是坑了。
B树和B+树的区别
- 在B树中,你可以将键和值存放在内部节点和叶子节点;但在B+树中,内部节点都是键,没有值,叶子节点同时存放键和值。
- B+树的叶子节点有一条链相连,而B树的叶子节点各自独立。
数据库为什么使用B+树而不是B树
- B树只适合随机检索,而B+树同时支持随机检索和顺序检索;
- B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短。
- 增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。
什么是聚簇索引?何时使用聚簇索引与非聚簇索引
- 聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据
- 非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因
事物的四大特性(ACID)介绍一下?
- 原子性: 事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
- 一致性: 执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
- 隔离性: 并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
- 持久性: 一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。
什么是脏读?幻读?不可重复读?
- 脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
- 不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
- 幻读(Phantom Read):在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。
什么是事务的隔离级别?MySQL的默认隔离级别是什么?
隔离级别 | 脏读 | 不可重复读 | 幻影读 |
---|---|---|---|
READ-UNCOMMITTED | √ | √ | √ |
READ-COMMITTED | × | √ | √ |
REPEATABLE-READ | × | × | √ |
SERIALIZABLE | × | × | × |
SQL 标准定义了四个隔离级别:
READ-UNCOMMITTED(读取未提交): 最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
READ-COMMITTED(读取已提交): 允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
REPEATABLE-READ(可重复读): 对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
SERIALIZABLE(可串行化): 最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。
这里需要注意的是:Mysql 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别
事务隔离机制的实现基于锁机制和并发调度。其中并发调度使用的是MVVC(多版本并发控制),通过保存修改的旧版本信息来支持并发一致性读和回滚等特性。
锁
对MySQL的锁了解吗
当数据库有并发事务的时候,可能会产生数据的不一致,这时候需要一些机制来保证访问的次序,锁机制就是这样的一个机制。
就像酒店的房间,如果大家随意进出,就会出现多人抢夺同一个房间的情况,而在房间上装上锁,申请到钥匙的人才可以入住并且将房间锁起来,其他人只有等他使用完毕才可以再次使用。
按照锁的粒度分数据库锁有哪些?锁机制与InnoDB锁算法
在关系型数据库中,可以按照锁的粒度把数据库锁分为行级锁(INNODB引擎)、表级锁(MYISAM引擎)和页级锁(BDB引擎 )。
MyISAM和InnoDB存储引擎使用的锁:
- MyISAM采用表级锁(table-level locking)。
- InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁
行级锁,表级锁和页级锁对比
行级锁 行级锁是Mysql中锁定粒度最细的一种锁,表示只针对当前操作的行进行加锁。行级锁能大大减少数据库操作的冲突。其加锁粒度最小,但加锁的开销也最大。行级锁分为共享锁 和 排他锁。
特点:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。
表级锁 表级锁是MySQL中锁定粒度最大的一种锁,表示对当前操作的整张表加锁,它实现简单,资源消耗较少,被大部分MySQL引擎支持。最常使用的MYISAM与INNODB都支持表级锁定。表级锁定分为表共享读锁(共享锁)与表独占写锁(排他锁)。
特点:开销小,加锁快;不会出现死锁;锁定粒度大,发出锁冲突的概率最高,并发度最低。
页级锁 页级锁是MySQL中锁定粒度介于行级锁和表级锁中间的一种锁。表级锁速度快,但冲突多,行级冲突少,但速度慢。所以取了折衷的页级,一次锁定相邻的一组记录。
特点:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
从锁的类别上分MySQL都有哪些锁呢?像上面那样子进行锁定岂不是有点阻碍并发效率了
从锁的类别上来讲,有共享锁和排他锁。
**共享锁: **又叫做读锁。 当用户要进行数据的读取时,对数据加上共享锁。共享锁可以同时加上多个。
**排他锁: **又叫做写锁。 当用户要进行数据的写入时,对数据加上排他锁。排他锁只可以加一个,他和其他的排他锁,共享锁都相斥。
用上面的例子来说就是用户的行为有两种,一种是来看房,多个用户一起看房是可以接受的。 一种是真正的入住一晚,在这期间,无论是想入住的还是想看房的都不可以。
锁的粒度取决于具体的存储引擎,InnoDB实现了行级锁,页级锁,表级锁。
他们的加锁开销从大到小,并发能力也是从大到小。
MySQL中InnoDB引擎的行锁是怎么实现的?
答:InnoDB是基于索引来完成行锁
例: select * from tab_with_index where id = 1 for update;
for update 可以根据条件来完成行锁锁定,并且 id 是有索引键的列,如果 id 不是索引键那么InnoDB将完成表锁,并发将无从谈起
什么是死锁?怎么解决?
死锁是指两个或多个事务在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。
常见的解决死锁的方法
-
如果不同程序会并发存取多个表,尽量约定以相同的顺序访问表,可以大大降低死锁机会。
-
在同一个事务中,尽可能做到一次锁定所需要的所有资源,减少死锁产生概率;
-
对于非常容易产生死锁的业务部分,可以尝试使用升级锁定颗粒度,通过表级锁定来减少死锁产生的概率;
如果业务处理不好可以用分布式事务锁或者使用乐观锁
数据库的乐观锁和悲观锁是什么?怎么实现的?
数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性。乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段。
悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。在查询完数据的时候就把事务锁起来,直到提交事务。实现方式:使用数据库中的锁机制
乐观锁:假设不会发生并发冲突,只在提交操作时检查是否违反数据完整性。在修改数据的时候把事务锁起来,通过version的方式来进行锁定。实现方式:乐一般会使用版本号机制或CAS算法实现。
两种锁的使用场景
从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。
但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。
SQL的生命周期?
-
应用服务器与数据库服务器建立一个连接
-
数据库进程拿到请求sql
-
解析并生成执行计划,执行
-
读取数据到内存并进行逻辑处理
-
通过步骤一的连接,发送结果到客户端
-
关掉连接,释放资源