• 冷战


    1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表“铁幕演说”,正式拉开了冷战序幕。

    美国和苏联同为世界上的“超级大国”,为了争夺世界霸权,两国及其盟国展开了数十年的斗争。在这段时期,虽然分歧和冲突严重,但双方都尽力避免世界范围的大规模战争(第三次世界大战)爆发,其对抗通常通过局部代理战争、科技和军备竞赛、太空竞争、外交竞争等“冷”方式进行,即“相互遏制,不动武力”,因此称之为“冷战”。
    Reddington 是美国的海军上将。由于战争局势十分紧张,因此他需要时刻关注着苏联的各个活动,避免使自己的国家陷入困境。苏联在全球拥有 N 个军工厂,但由于规划不当,一开始这些军工厂之间是不存在铁路的,为了使武器制造更快,苏联决定修建若干条道路使得某些军工厂联通。Reddington 得到了苏联的修建日程表,并且他需要时刻关注着某两个军工厂是否联通,以及最早在修建哪条道路时会联通。具体而言,现在总共有M 个操作,操作分为两类:
    • 0 u v,这次操作苏联会修建一条连接 u 号军工厂及 v 号军工厂的铁路,注意铁路都是双向的;
    • 1 u v, Reddington 需要知道 u 号军工厂及 v 号军工厂最早在加入第几条条铁路后会联通,假如到这次操作都没有联通,则输出 0;作为美国最强科学家, Reddington 需要你帮忙设计一个程序,能满足他的要求。
    输入

    第一行两个整数 N, M。
    接下来 M 行,每行为 0 u v 或 1 u v 的形式。
    数据是经过加密的,对于每次加边或询问,真正的 u, v 都等于读入的
    u, v 异或上上一次询问的答案。一开始这个值为 0。
    1 ≤ N, M ≤ 500000,解密后的 u, v 满足1 ≤ u, v ≤ N, u不等于v
    输出

    对于每次 1 操作,输出 u, v 最早在加入哪条边后会联通,若到这个操
    作时还没联通,则输出 0。
    样例输入

    5 9
    0 1 4
    1 2 5
    0 2 4
    0 3 4
    1 3 1
    0 7 0
    0 6 1
    0 1 6
    1 2 6

    样例输出

    0  //在此查询时刻,2和5还没有连通。
    3  //3和1在第3个时刻连通
    5  //2和6在第五个时刻连通。

    sol:本题是通过不断加边的操作,逐步将点进行连通。同时在线询问,两个点的连通性及连通的时刻。我们用并查集来实现。

    1.修建铁路,加边的操作,如下样例:

    1)1-2 1  //1-2在第一个时间点连通

    2)2-3 2

    3)4-5 3

    4)6-7 4

    5)3-5 5

    6)5-7 6

    在合并两个集合的时候,我们用按秩合并的方法,及合并时根据待合并的两棵树的高度选择父亲点。若要合并的两棵树的高度相等,随便以哪棵树的根作为父亲点都可以,如上图第五步,用1做根或4做根都一样,合并后的新树的高度在原来基础上+1。如树的高度不一样,将矮的树合并到高的树上去,这样不会影响合并后的新树的高度。如合并上图第四步和第五步,得到第六步。

    2.查询操作:查询时,若当前时刻两点连通,则找出两点间这条链上的最大边权值即为连通的时刻;若还没连通,返回0.

    为什么要用按秩合并?其目的是为了控制树的高度。那为什么不用路径压缩控制呢?因为路径压缩会改变树的形态。如上图第五步中结点5,如路径压缩,1连5,那1连5的权值应该为多少呢?是5还是3?如果查询2和5,结果应为5,如查询4和5,其结果应为3。这个题目,我们需要用到两点间的边权值,希望保持原树的形态,所以我们不用路径压缩。

    3.找集合中两点间的最大边权值:这里用朴素的lca的方法。合并后树的高度不超过logn(这个可以证明)。

    4.本题查询时进行了加密,对查询的两个点与上一次查询求得的正确答案进行异或运算。于是只有上一次答对了,才能成功解密下一次的查询结点,上一次答错了,后面查询都错。这样强制做个在线询问。

    代码实现:

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #define N 500010
     5 using namespace std;
     6 int fa[N] , v[N] , h[N] , cnt , tot;
     7 int find(int x)
     8 {
     9     return fa[x] ? find(fa[x]) : x;
    10 }
    11 int deep(int x)
    12 {
    13     return fa[x] ? deep(fa[x]) + 1 : 0;
    14 }
    15 void add(int x , int y , int z)
    16 {
    17     x = find(x) , y = find(y);
    18     if(x != y)
    19     {
    20         cnt ++ ;
    21         if(h[x] < h[y]) //如果y所在的树更高,则将x所在的树合并到y上
    22             fa[x] = y ,  v[x] = z; //x的父亲设为y,x加入树的时间点为z(这个x是参数x的根结点哟)
    23         else
    24             fa[y] = x , v[y] = z;
    25         if(h[x] == h[y])
    26             h[x] ++ ;
    27     }
    28 }
    29 int query(int x , int y)
    30 {
    31     if(find(x) != find(y)) //没在一个块中
    32        return 0;
    33     int dx = deep(x) , dy = deep(y) , ans = 0;
    34     while(dx > dy) //找出x到y的路径上的最大值
    35         ans = max(ans , v[x]) , x = fa[x] , dx -- ;
    36     while(dx < dy)
    37         ans = max(ans , v[y]) , y = fa[y] , dy -- ;
    38     while(x != y)
    39         ans = max(ans , max(v[x] , v[y])) , x = fa[x] , y = fa[y];
    40     return ans;
    41 }
    42 int main()
    43 {
    44     int m , opt , x , y , last = 0;
    45     scanf("%*d%d" , &m);
    46     while(m -- )
    47     {
    48         scanf("%d%d%d" , &opt , &x , &y) , x ^= last , y ^= last;
    49         if(opt) //查询x,y是什么时候连通的
    50             printf("%d
    " , last = query(x , y));
    51         else  //x,y在第tot的时候连在一起
    52             add(x , y , ++tot);
    53     }
    54     return 0;
    55 }

  • 相关阅读:
    other备忘
    Mdoelsim10.4怎么脚本单独仿真ISE14.7 IP核
    Vivado怎么使用In system debug(类似于chipscope的东西)
    Vivado如何使用bat脚本一键创建工程
    Vivado中VIO核使用
    FPGA上外挂DDR2&DDR3&MIG IP的使用记录
    Vivado2016旧工程IP移动到新工程
    怎样在ISE14.7中固化FLASH文件
    Quartus13.1全编译出现引脚错误(神级bug)
    自用windows小软件
  • 原文地址:https://www.cnblogs.com/cutepota/p/12507420.html
Copyright © 2020-2023  润新知