• 《统计学习方法》第二章,感知机


    ▶ 感知机来找到线性可分数据集的分割,很像单层神经网络

    ● 原始形式感知机,代码

      1 import numpy as np
      2 import matplotlib.pyplot as plt
      3 from mpl_toolkits.mplot3d import Axes3D
      4 from mpl_toolkits.mplot3d.art3d import Poly3DCollection
      5 from matplotlib.patches import Rectangle
      6 import warnings
      7 
      8 warnings.filterwarnings("ignore")                          
      9 dataSize = 10000
     10 trainRatio = 0.3
     11 maxTurn = 300
     12 ita = 0.3
     13 epsilon = 0.01
     14 colors = [[0.5,0.25,0],[1,0,0],[0,0.5,0],[0,0,1],[1,0.5,0]]                         # 棕红绿蓝橙
     15 trans = 0.5
     16 
     17 def dataSplit(x, y, part):                                                          # 将数据集按给定索引分为两段
     18     return x[:part], y[:part],x[part:],y[part:]
     19 
     20 def function(x,para):                                                               # 回归函数
     21     return np.sum(x * para[0]) + para[1]                                           
     22 
     23 def judge(x, para):                                                                 # 分类函数,由乘加部分和阈值部分组成
     24     return np.sign(function(x, para))
     25 
     26 def createData(dim, count = dataSize):                                              # 创建数据集
     27     np.random.seed(103)       
     28     X = np.random.rand(count,dim)
     29     Y = 2 * ((3 - 2 * dim)*X[:,0] + 2 * np.sum(X[:,1:], 1) > 0.5).astype(int) - 1   # 只考虑 {-1,1} 的二分类       
     30     #print(output)  
     31     class1Count = 0
     32     for i in range(count):
     33         class1Count += (Y[i] + 1)>>1   
     34     print("dim = %d, dataSize = %d, class 1 count -> %4f"%(dim, count, class1Count / count))
     35     return X, Y
     36 
     37 def perceptron(dataX, dataY):                                                       # 感知机
     38     count, dim = np.shape(dataX)   
     39     w = np.random.rand(dim)                                                         # 随机初值
     40     b = np.random.rand()
     41 
     42     turn = 0
     43     while turn < maxTurn:       
     44         error = 0.0
     45         for i in range(count):
     46             if dataY[i] * (np.sum(w * dataX[i]) + b) <= 0:                          # 找到分类错误的点
     47                 w += ita * dataX[i] * dataY[i]                                      # 修正 w 和 b
     48                 b += ita *dataY[i]
     49                 error += np.sum(w * dataX[i] + b - dataY[i]) ** 2
     50         error /= count
     51         turn += 1       
     52         print("turn = ", turn, ", error = ", error)
     53         if error < epsilon:
     54             break               
     55     return (w, b)
     56 
     57 def test(dim):                                               
     58     allX, allY = createData(dim)
     59     trainX, trainY, testX, testY = dataSplit(allX, allY, int(dataSize * trainRatio))
     60     
     61     para = perceptron(trainX, trainY)
     62      
     63     myResult = [ judge(x, para) for x in testX]                                     # 测试结果
     64     errorRatio = np.sum((np.array(myResult) - testY)**2) / (dataSize * (1 - trainRatio))
     65     print("dim = %d, errorRatio = %4f
    "%(dim, errorRatio))
     66     
     67     if dim >= 4:                                                                    # 4维以上不画图,只输出测试错误率
     68         return
     69     errorPX = []                                                                    # 测试数据集分为错误类,1 类和 0 类
     70     errorPY = []
     71     class1 = []
     72     class0 = []
     73     for i in range(len(testX)):
     74         if myResult[i] != testY[i]:
     75             errorPX.append(testX[i])
     76             errorPY.append(testY[i])
     77         elif myResult[i] == 1:
     78             class1.append(testX[i])
     79         else:
     80             class0.append(testX[i])
     81     errorPX = np.array(errorPX)
     82     errorPY = np.array(errorPY)
     83     class1 = np.array(class1)
     84     class0 = np.array(class0)
     85 
     86     fig = plt.figure(figsize=(10, 8))                  
     87     
     88     if dim == 1:
     89         plt.xlim(0.0,1.0)
     90         plt.ylim(-0.25,1.25)
     91         plt.plot([0.5, 0.5], [-0.5, 1.25], color = colors[0],label = "realBoundary")               
     92         plt.plot([0, 1], [ function(i, para) for i in [0,1] ],color = colors[4], label = "myF")
     93         plt.scatter(class1, np.ones(len(class1)), color = colors[1], s = 2,label = "class1Data")               
     94         plt.scatter(class0, np.zeros(len(class0)), color = colors[2], s = 2,label = "class0Data")               
     95         if len(errorPX) != 0:
     96             plt.scatter(errorPX, errorPY,color = colors[3], s = 16,label = "errorData")       
     97         plt.text(0.2, 1.12, "realBoundary: 2x = 1
    myF(x) = " + str(round(para[0][0],2)) + " x + " + str(round(para[1],2)) + "
     errorRatio = " + str(round(errorRatio,4)),
     98             size=15, ha="center", va="center", bbox=dict(boxstyle="round", ec=(1., 0.5, 0.5), fc=(1., 1., 1.)))
     99         R = [Rectangle((0,0),0,0, color = colors[k]) for k in range(5)]
    100         plt.legend(R, ["realBoundary", "class1Data", "class0Data", "errorData", "myF"], loc=[0.81, 0.2], ncol=1, numpoints=1, framealpha = 1)       
    101    
    102     if dim == 2:       
    103         plt.xlim(0.0,1.0)
    104         plt.ylim(0.0,1.0)
    105         plt.plot([0,1], [0.25,0.75], color = colors[0],label = "realBoundary")       
    106         xx = np.arange(0, 1 + 0.1, 0.1)               
    107         X,Y = np.meshgrid(xx, xx)
    108         contour = plt.contour(X, Y, [ [ function((X[i,j],Y[i,j]), para) for j in range(11)] for i in range(11) ])
    109         plt.clabel(contour, fontsize = 10,colors='k')
    110         plt.scatter(class1[:,0], class1[:,1], color = colors[1], s = 2,label = "class1Data")       
    111         plt.scatter(class0[:,0], class0[:,1], color = colors[2], s = 2,label = "class0Data")       
    112         if len(errorPX) != 0:
    113             plt.scatter(errorPX[:,0], errorPX[:,1], color = colors[3], s = 8,label = "errorData")       
    114         plt.text(0.73, 0.92, "realBoundary: -x + 2y = 1/2
    myF(x,y) = " + str(round(para[0][0],2)) + " x + " + str(round(para[0][1],2)) + " y + " + str(round(para[1],2)) + "
     errorRatio = " + str(round(errorRatio,4)), 
    115             size = 15, ha="center", va="center", bbox=dict(boxstyle="round", ec=(1., 0.5, 0.5), fc=(1., 1., 1.)))
    116         R = [Rectangle((0,0),0,0, color = colors[k]) for k in range(4)]
    117         plt.legend(R, ["realBoundary", "class1Data", "class0Data", "errorData"], loc=[0.81, 0.2], ncol=1, numpoints=1, framealpha = 1)    
    118 
    119     if dim == 3:       
    120         ax = Axes3D(fig)
    121         ax.set_xlim3d(0.0, 1.0)
    122         ax.set_ylim3d(0.0, 1.0)
    123         ax.set_zlim3d(0.0, 1.0)
    124         ax.set_xlabel('X', fontdict={'size': 15, 'color': 'k'})
    125         ax.set_ylabel('Y', fontdict={'size': 15, 'color': 'k'})
    126         ax.set_zlabel('W', fontdict={'size': 15, 'color': 'k'})
    127         v = [(0, 0, 0.25), (0, 0.25, 0), (0.5, 1, 0), (1, 1, 0.75), (1, 0.75, 1), (0.5, 0, 1)]
    128         f = [[0,1,2,3,4,5]]
    129         poly3d = [[v[i] for i in j] for j in f]
    130         ax.add_collection3d(Poly3DCollection(poly3d, edgecolor = 'k', facecolors = colors[0]+[trans], linewidths=1))       
    131         ax.scatter(class1[:,0], class1[:,1],class1[:,2], color = colors[1], s = 2, label = "class1")                      
    132         ax.scatter(class0[:,0], class0[:,1],class0[:,2], color = colors[2], s = 2, label = "class0")                      
    133         if len(errorPX) != 0:
    134             ax.scatter(errorPX[:,0], errorPX[:,1],errorPX[:,2], color = colors[3], s = 8, label = "errorData")               
    135         ax.text3D(0.8, 0.98, 1.15, "realBoundary: -3x + 2y +2z = 1/2
    myF(x,y,z) = " + str(round(para[0][0],2)) + " x + " + 
    136             str(round(para[0][1],2)) + " y + " + str(round(para[0][2],2)) + " z + " + str(round(para[1],2)) + "
     errorRatio = " + str(round(errorRatio,4)), 
    137             size = 12, ha="center", va="center", bbox=dict(boxstyle="round", ec=(1, 0.5, 0.5), fc=(1, 1, 1)))
    138         R = [Rectangle((0,0),0,0, color = colors[k]) for k in range(4)]
    139         plt.legend(R, ["realBoundary", "class1Data", "class0Data", "errorData"], loc=[0.83, 0.1], ncol=1, numpoints=1, framealpha = 1)
    140        
    141     fig.savefig("R:\dim" + str(dim) + ".png")
    142     plt.close()       
    143 
    144 if __name__ == '__main__':
    145     test(1)
    146     test(2)   
    147     test(3)
    148     test(4)

    ● 输出结果

    dim = 1, dataSize = 10000, class 1 count -> 0.509000
    turn =  1 , error =  0.017389410798594473
    turn =  2 , error =  0.0
    dim = 1, errorRatio = 0.004571
    
    dim = 2, dataSize = 10000, class 1 count -> 0.496000
    turn =  1 , error =  0.21416356258715985
    
    ...
    
    turn =  11 , error =  0.10398373598573663
    turn =  12 , error =  0.045706020341763055
    turn =  13 , error =  0.0
    dim = 2, errorRatio = 0.002286
    
    dim = 3, dataSize = 10000, class 1 count -> 0.498200
    turn =  1 , error =  0.45650719829126757
    
    ...
    
    turn =  12 , error =  0.14528529033345788
    turn =  13 , error =  0.1376817605623497
    turn =  14 , error =  0.0
    dim = 3, errorRatio = 0.000571
    
    dim = 4, dataSize = 10000, class 1 count -> 0.496900
    turn =  1 , error =  0.7717105869223287
    
    ...
    
    turn =  298 , error =  0.7316455346511096
    turn =  299 , error =  0.6088039354340593
    turn =  300 , error =  0.48205216369651693
    dim = 4, errorRatio = 0.005143

    ● 画图

    ● 对偶形式感知机,代码,只改变函数 perceptron,不用 Gram 矩阵,太占空间

     1 def perceptron(dataX, dataY):    
     2     count, dim = np.shape(dataX)    
     3     w = np.random.rand(dim)                                                         # 随机初值
     4     b = np.random.rand()
     5     alpha = np.zeros(count)
     6     xy = dataX * dataY.reshape(count,1)
     7         
     8     turn = 0
     9     while turn < maxTurn:        
    10         error = 0.0
    11         for i in range(count):
    12             t = np.sum(np.matmul(alpha,xy) * dataX[i]) + b                           # 当前预测值
    13             if dataY[i] * t <= 0:                                                    # 选取分类错误的点进行修正
    14                 alpha[i] += ita
    15                 b += ita * dataY[i]
    16         
    17         w = np.matmul(alpha,xy)                                                      # 一轮结束,计算 w 和误差
    18         error = np.sum( (np.sign(np.sum(w * dataX, 1) + b) - dataY) ** 2 ) / count
    19         turn += 1        
    20         print("turn = ", turn, ", error = ", error)
    21         if error < epsilon:
    22             break                
    23     return (w, b)

    ● 输出结果,似乎更快,但是精度有所下降

    dim = 1, dataSize = 10000, class 1 count -> 0.509000
    turn =  1 , error =  0.0
    dim = 1, errorRatio = 0.005143
    
    dim = 2, dataSize = 10000, class 1 count -> 0.496000
    turn =  1 , error =  0.008
    dim = 2, errorRatio = 0.007429
    
    dim = 3, dataSize = 10000, class 1 count -> 0.498200
    turn =  1 , error =  0.07333333333333333
    turn =  2 , error =  0.3293333333333333
    turn =  3 , error =  0.018666666666666668
    turn =  4 , error =  0.012
    turn =  5 , error =  0.172
    turn =  6 , error =  0.10666666666666667
    turn =  7 , error =  0.05333333333333334
    turn =  8 , error =  0.0026666666666666666
    dim = 3, errorRatio = 0.006857
    
    dim = 4, dataSize = 10000, class 1 count -> 0.496900
    turn =  1 , error =  0.088
    
    ...
    
    turn =  45 , error =  0.021333333333333333
    turn =  46 , error =  0.009333333333333334
    dim = 4, errorRatio = 0.010857

    ● 画图

  • 相关阅读:
    live555学习之RTSP连接建立以及请求消息处理过程
    RTSP协议学习笔记
    RTP头结构解析
    Doubango ims 框架 分析之 多媒体部分
    VMware虚拟机 NAT模式 配置静态ip
    计算机网络: IP地址,子网掩码,网段表示法,默认网关,DNS服务器详解
    VMWare VMNet 8 的配置使用
    VMware虚拟机CentOS7
    如何禁止虚拟机自动获取DHCP分配的ip地址
    Linux之VMware虚拟机取消DHCP
  • 原文地址:https://www.cnblogs.com/cuancuancuanhao/p/11151306.html
Copyright © 2020-2023  润新知