• RabbitMQ


    http://rabbitmq.mr-ping.com 中文文档

    什么叫消息队列

    消息(Message)是指在应用间传送的数据。消息可以非常简单,比如只包含文本字符串,也可以更复杂,可能包含嵌入对象。

    消息队列(Message Queue)是一种应用间的通信方式,消息发送后可以立即返回,由消息系统来确保消息的可靠传递。消息发布者只管把消息发布到 MQ 中而不用管谁来取,消息使用者只管从 MQ 中取消息而不管是谁发布的。这样发布者和使用者都不用知道对方的存在。

    为何用消息队列

    从上面的描述中可以看出消息队列是一种应用间的异步协作机制,那什么时候需要使用 MQ 呢?

    以常见的订单系统为例,用户点击【下单】按钮之后的业务逻辑可能包括:扣减库存、生成相应单据、发红包、发短信通知。在业务发展初期这些逻辑可能放在一起同步执行,随着业务的发展订单量增长,需要提升系统服务的性能,这时可以将一些不需要立即生效的操作拆分出来异步执行,比如发放红包、发短信通知等。这种场景下就可以用 MQ ,在下单的主流程(比如扣减库存、生成相应单据)完成之后发送一条消息到 MQ 让主流程快速完结,而由另外的单独线程拉取MQ的消息(或者由 MQ 推送消息),当发现 MQ 中有发红包或发短信之类的消息时,执行相应的业务逻辑。

    RabbitMQ 

    RabbitMQ 是一个由 Erlang 语言开发的 AMQP 的开源实现。

    rabbitMQ是一款基于AMQP协议的消息中间件,它能够在应用之间提供可靠的消息传输。在易用性,扩展性,高可用性上表现优秀。使用消息中间件利于应用之间的解耦,生产者(客户端)无需知道消费者(服务端)的存在。而且两端可以使用不同的语言编写,大大提供了灵活性。

     

    中文文档

    rabbitMQ安装

    for Linux:
    
    安装配置epel源
       $ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
     
    安装erlang
       $ yum -y install erlang
     
    安装RabbitMQ
       $ yum -y install rabbitmq-server
    注意:service rabbitmq-server start/stop
    for Mac:
    
    bogon:~ yuan$ brew install rabbitmq
    bogon:~ yuan$ export PATH=$PATH:/usr/local/sbin
    bogon:~ yuan$ rabbitmq-server

    rabbitMQ工作模型

    简单模式

    示例

    # ######################### 生产者 #########################
    #!/usr/bin/env python
    import pika
    connection = pika.BlockingConnection(pika.ConnectionParameters( host='localhost'))
    
    channel = connection.channel()
    
    channel.queue_declare(queue='hello')
    
    channel.basic_publish(exchange='',
                          routing_key='hello',
                          body='Hello World!')
    
    print(" [x] Sent 'Hello World!'")
    connection.close()
    # ########################## 消费者 ##########################
     
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
    channel = connection.channel()
     
    channel.queue_declare(queue='hello')
     
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
     
    channel.basic_consume( callback,
                           queue='hello',
                           no_ack=True)
     
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()

    相关参数

    (1)no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。

    • 回调函数中的ch.basic_ack(delivery_tag=method.delivery_tag)
    • basic_comsume中的no_ack=False

    消息接收端应该这么写:

    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='10.211.55.4'))
    channel = connection.channel()
    
    channel.queue_declare(queue='hello')
    
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        import time
        time.sleep(10)
        print 'ok'
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=False)
    
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()

    (2)  durable  :消息不丢失

    # 生产者
    #!/usr/bin/env python
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
    channel = connection.channel()
    
    # make message persistent
    channel.queue_declare(queue='hello', durable=True)
    
    channel.basic_publish(exchange='',
                          routing_key='hello',
                          body='Hello World!',
                          properties=pika.BasicProperties(
                              delivery_mode=2, # make message persistent
                          ))
    print(" [x] Sent 'Hello World!'")
    connection.close()
    
    
    # 消费者
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
    channel = connection.channel()
    
    # make message persistent
    channel.queue_declare(queue='hello', durable=True)
    
    
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        import time
        time.sleep(10)
        print 'ok'
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=False)
    
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()

    (3) 消息获取顺序

    默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。

    channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(host='10.211.55.4'))
    channel = connection.channel()
    
    # make message persistent
    channel.queue_declare(queue='hello')
    
    
    def callback(ch, method, properties, body):
        print(" [x] Received %r" % body)
        import time
        time.sleep(10)
        print 'ok'
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    channel.basic_qos(prefetch_count=1)
    
    channel.basic_consume(callback,
                          queue='hello',
                          no_ack=False)
    
    print(' [*] Waiting for messages. To exit press CTRL+C')
    channel.start_consuming()

    exchange模型

    3.1 发布订阅

    发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。

    exchange type = fanout
    # 生产者
    #!/usr/bin/env python
    import pika
    import sys
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='logs',
                             type='fanout')
    
    message = ' '.join(sys.argv[1:]) or "info: Hello World!"
    channel.basic_publish(exchange='logs',
                          routing_key='',
                          body=message)
    print(" [x] Sent %r" % message)
    connection.close()
    
    
    # 消费者
    #!/usr/bin/env python
    import pika
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='logs',
                             type='fanout')
    
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
    
    channel.queue_bind(exchange='logs',
                       queue=queue_name)
    
    print(' [*] Waiting for logs. To exit press CTRL+C')
    
    def callback(ch, method, properties, body):
        print(" [x] %r" % body)
    
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
    
    channel.start_consuming()
    View Code

     3.2 关键字发送

     exchange type = direct

    之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

    #!/usr/bin/env python
    import pika
    import sys
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='direct_logs',
                             type='direct')
    
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
    
    severities = sys.argv[1:]
    if not severities:
        sys.stderr.write("Usage: %s [info] [warning] [error]
    " % sys.argv[0])
        sys.exit(1)
    
    for severity in severities:
        channel.queue_bind(exchange='direct_logs',
                           queue=queue_name,
                           routing_key=severity)
    
    print(' [*] Waiting for logs. To exit press CTRL+C')
    
    def callback(ch, method, properties, body):
        print(" [x] %r:%r" % (method.routing_key, body))
    
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
    
    channel.start_consuming()
    View Code

     3.3 模糊匹配

     exchange type = topic

    发送者路由值              队列中
    old.boy.python          old.*  -- 不匹配
    old.boy.python          old.#  -- 匹配

    在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。

    • # 表示可以匹配 0 个 或 多个 单词
    • *  表示只能匹配 一个 单词

     示例:

    #!/usr/bin/env python
    import pika
    import sys
    
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    channel = connection.channel()
    
    channel.exchange_declare(exchange='topic_logs',
                             type='topic')
    
    result = channel.queue_declare(exclusive=True)
    queue_name = result.method.queue
    
    binding_keys = sys.argv[1:]
    if not binding_keys:
        sys.stderr.write("Usage: %s [binding_key]...
    " % sys.argv[0])
        sys.exit(1)
    
    for binding_key in binding_keys:
        channel.queue_bind(exchange='topic_logs',
                           queue=queue_name,
                           routing_key=binding_key)
    
    print(' [*] Waiting for logs. To exit press CTRL+C')
    
    def callback(ch, method, properties, body):
        print(" [x] %r:%r" % (method.routing_key, body))
    
    channel.basic_consume(callback,
                          queue=queue_name,
                          no_ack=True)
    
    channel.start_consuming()

     基于RabbitMQ的RPC

    Callback queue 回调队列

    一个客户端向服务器发送请求,服务器端处理请求后,将其处理结果保存在一个存储体中。而客户端为了获得处理结果,那么客户在向服务器发送请求时,同时发送一个回调队列地址reply_to

    Correlation id 关联标识

    一个客户端可能会发送多个请求给服务器,当服务器处理完后,客户端无法辨别在回调队列中的响应具体和那个请求时对应的。为了处理这种情况,客户端在发送每个请求时,同时会附带一个独有correlation_id属性,这样客户端在回调队列中根据correlation_id字段的值就可以分辨此响应属于哪个请求。


    客户端发送请求:某个应用将请求信息交给客户端,然后客户端发送RPC请求,在发送RPC请求到RPC请求队列时,客户端至少发送带有reply_to以及correlation_id两个属性的信息
    
    服务器端工作流: 等待接受客户端发来RPC请求,当请求出现的时候,服务器从RPC请求队列中取出请求,然后处理后,将响应发送到reply_to指定的回调队列中
    
    客户端接受处理结果: 客户端等待回调队列中出现响应,当响应出现时,它会根据响应中correlation_id字段的值,将其返回给对应的应用

    服务器端

    #!/usr/bin/env python
    import pika
    
    # 建立连接,服务器地址为localhost,可指定ip地址
    connection = pika.BlockingConnection(pika.ConnectionParameters(
            host='localhost'))
    
    # 建立会话
    channel = connection.channel()
    
    # 声明RPC请求队列
    channel.queue_declare(queue='rpc_queue')
    
    # 数据处理方法
    def fib(n):
        if n == 0:
            return 0
        elif n == 1:
            return 1
        else:
            return fib(n-1) + fib(n-2)
    
    # 对RPC请求队列中的请求进行处理
    def on_request(ch, method, props, body):
        n = int(body)
    
        print(" [.] fib(%s)" % n)
    
        # 调用数据处理方法
        response = fib(n)
    
        # 将处理结果(响应)发送到回调队列
        ch.basic_publish(exchange='',
                         routing_key=props.reply_to,
                         properties=pika.BasicProperties(correlation_id = 
                                                             props.correlation_id),
                         body=str(response))
        ch.basic_ack(delivery_tag = method.delivery_tag)
    
    # 负载均衡,同一时刻发送给该服务器的请求不超过一个
    channel.basic_qos(prefetch_count=1)
    
    channel.basic_consume(on_request, queue='rpc_queue')
    
    print(" [x] Awaiting RPC requests")
    channel.start_consuming()

    客户端

    #!/usr/bin/env python
    import pika
    import uuid
    
    class FibonacciRpcClient(object):
        def __init__(self):
            ”“”
            客户端启动时,创建回调队列,会开启会话用于发送RPC请求以及接受响应
            
            “”“
            
            # 建立连接,指定服务器的ip地址
            self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                    host='localhost'))
                    
            # 建立一个会话,每个channel代表一个会话任务
            self.channel = self.connection.channel()
            
            # 声明回调队列,再次声明的原因是,服务器和客户端可能先后开启,该声明是幂等的,多次声明,但只生效一次
            result = self.channel.queue_declare(exclusive=True)
            # 将次队列指定为当前客户端的回调队列
            self.callback_queue = result.method.queue
            
            # 客户端订阅回调队列,当回调队列中有响应时,调用`on_response`方法对响应进行处理; 
            self.channel.basic_consume(self.on_response, no_ack=True,
                                       queue=self.callback_queue)
    
    
        # 对回调队列中的响应进行处理的函数
        def on_response(self, ch, method, props, body):
            if self.corr_id == props.correlation_id:
                self.response = body
    
    
        # 发出RPC请求
        def call(self, n):
        
            # 初始化 response
            self.response = None
            
            #生成correlation_id 
            self.corr_id = str(uuid.uuid4())
            
            # 发送RPC请求内容到RPC请求队列`rpc_queue`,同时发送的还有`reply_to`和`correlation_id`
            self.channel.basic_publish(exchange='',
                                       routing_key='rpc_queue',
                                       properties=pika.BasicProperties(
                                             reply_to = self.callback_queue,
                                             correlation_id = self.corr_id,
                                             ),
                                       body=str(n))
                                       
            
            while self.response is None:
                self.connection.process_data_events()
            return int(self.response)
    
    # 建立客户端
    fibonacci_rpc = FibonacciRpcClient()
    
    # 发送RPC请求
    print(" [x] Requesting fib(30)")
    response = fibonacci_rpc.call(30)
    print(" [.] Got %r" % response)

    简介

    RabbitMQ:接受消息再传递消息,可以视为一个“邮局”。发送者和接受者通过队列来进行交互,队列的大小可以视为无限的,多个发送者可以发生给一个队列,多个接收者也可以从一个队列中接受消息。

    code

    rabbitmq使用的协议是amqp,用于python的推荐客户端是pika

    pip install pika -i https://pypi.douban.com/simple/

    生产者:send.py

    import pika
    
    # 建立一个连接
    connection = pika.BlockingConnection(pika.ConnectionParameters(
               'localhost'))  # 连接本地的RabbitMQ服务器
    channel = connection.channel()  # 获得channel

    这里链接的是本机的,如果想要连接其他机器上的服务器,只要填入地址或主机名即可。

    接下来我们开始发送消息了,注意要确保接受消息的队列是存在的,否则rabbitmq就丢弃掉该消息

    channel.queue_declare(queue='hello')  # 在RabbitMQ中创建hello这个队列
    channel.basic_publish(exchange='',  # 使用默认的exchange来发送消息到队列
                      routing_key='hello',  # 发送到该队列 hello 中
                      body='Hello World!')  # 消息内容
    
    connection.close()  # 关闭 同时flush

    RabbitMQ默认需要1GB的空闲磁盘空间,否则发送会失败。

    这时已在本地队列hello中存放了一个消息,如果使用 rabbitmqctl list_queues 可看到

    hello 1

    说明有一个hello队列 里面存放了一个消息

    消费者:receive.py

    import pika
    connection = pika.BlockingConnection(pika.ConnectionParameters(
                   'localhost'))
    channel = connection.channel()

    还是先链接到服务器,和之前发送时相同

    channel.queue_declare(queue='hello')  # 此处就是声明了 来确保该队列 hello 存在 可以多次声明 这里主要是为了防止接受程序先运行时出错
    
    def callback(ch, method, properties, body):  # 用于接收到消息后的回调
        print(" [x] Received %r" % body)
    
    channel.basic_consume(callback,
                          queue='hello',  # 收指定队列hello的消息
                          no_ack=True)  #在处理完消息后不发送ack给服务器
    channel.start_consuming()  # 启动消息接受 这会进入一个死循环

    工作队列(任务队列)

    工作队列是用于分发耗时任务给多个工作进程的。不立即做那些耗费资源的任务(需要等待这些任务完成),而是安排这些任务之后执行。例如我们把task作为message发送到队列里,启动工作进程来接受并最终执行,且可启动多个工作进程来工作。这适用于web应用,即不应在一个http请求的处理窗口内完成复杂任务。

    channel.basic_publish(exchange='',
                      routing_key='task_queue',
                      body=message,
                      properties=pika.BasicProperties(
                         delivery_mode = 2, # 使得消息持久化
                      ))

    分配消息的方式为 轮询 即每个工作进程获得相同的消息数。

    消息ack

    如果消息分配给某个工作进程,但是该工作进程未处理完成就崩溃了,可能该消息就丢失了,因为rabbitmq一旦把一个消息分发给工作进程,它就把该消息删掉了。

    为了预防消息丢失,rabbitmq提供了ack,即工作进程在收到消息并处理后,发送ack给rabbitmq,告知rabbitmq这时候可以把该消息从队列中删除了。如果工作进程挂掉 了,rabbitmq没有收到ack,那么会把该消息 重新分发给其他工作进程。不需要设置timeout,即使该任务需要很长时间也可以处理。

    ack默认是开启的,之前我们的工作进程显示指定了no_ack=True

    channel.basic_consume(callback, queue='hello')  # 会启用ack

    带ack的callback:

    def callback(ch, method, properties, body):
        print " [x] Received %r" % (body,)
        time.sleep( body.count('.') )
        print " [x] Done"
        ch.basic_ack(delivery_tag = method.delivery_tag)  # 发送ack

    消息持久化

    但是,有时RabbitMQ重启了,消息也会丢失。可在创建队列时设置持久化:
    (队列的性质一旦确定无法改变)

    channel.queue_declare(queue='task_queue', durable=True)

    同时在发送消息时也得设置该消息的持久化属性:

    channel.basic_publish(exchange='',
    routing_key="task_queue",
    body=message,
    properties=pika.BasicProperties(
    delivery_mode = 2, # make message persistent
    ))

    但是,如果在RabbitMQ刚接收到消息还没来得及存储,消息还是会丢失。同时,RabbitMQ也不是在接受到每个消息都进行存盘操作。如果还需要更完善的保证,需要使用publisher confirm。

    公平的消息分发

    轮询模式的消息分发可能并不公平,例如奇数的消息都是繁重任务的话,某些进程则会一直运行繁 重任务。即使某工作进程上有积压的消息未处理,如很多都没发ack,但是RabbitMQ还是会按照顺序发消息给它。可以在接受进程中加设置:

    channel.basic_qos(prefetch_count=1)

    告知RabbitMQ,这样在一个工作进程没回发ack情况下是不会再分配消息给它。

    群发

    一般情况下,一条消息是发送给一个工作进程,然后完成,有时想把一条消息同时发送给多个进程:

    exchange

    发送者是不是直接发送消息到队列中的,事实上发生者根本不知道消息会发送到那个队列,发送者只能把消息发送到exchange里。exchange一方面收生产者的消息,另一方面把他们推送到队列中。所以作为exchange,它需要知道当收到消息时它需要做什么,是应该把它加到一个特殊的队列中还是放到很多的队列中,或者丢弃。exchange有direct、topic、headers、fanout等种类,而群发使用的即fanout。之前在发布消息时,exchange的值为 '' 即使用default exchange。

    channel.exchange_declare(exchange='logs', type='fanout')  # 该exchange会把消息发送给所有它知道的队列中

    临时队列

    result = channel.queue_declare()  # 创建一个随机队列
    result = channel.queue_declare(exclusive=True)  # 创建一个随机队列,同时在没有接收者连接该队列后则销毁它
    queue_name = result.method.queue

    这样result.method.queue即是队列名称,在发送或接受时即可使用。

    绑定exchange 和 队列

    channel.queue_bind(exchange='logs',
                   queue='hello')

    logs在发送消息时给hello也发一份。

    在发送消息是使用刚刚创建的 logs exchange

    channel.basic_publish(exchange='logs',
                      routing_key='',
                      body=message)

    路由

    之前已经使用过bind,即建立exchange和queue的关系(该队列对来自该exchange的消息有兴趣),bind时可另外指定routing_key选项。

    使用direct exchange

    将对应routing key的消息发送到绑定相同routing key的队列中

    channel.exchange_declare(exchange='direct_logs',
                         type='direct')

    发送函数,发布不同severity的消息:

    channel.basic_publish(exchange='direct_logs',
                      routing_key=severity,
                      body=message)

    接受函数中绑定对应severity的:

    channel.queue_bind(exchange='direct_logs',
                       queue=queue_name,
                       routing_key=severity)

    使用topic exchange

    之前使用的direct exchange 只能绑定一个routing key,可以使用这种可以拿.隔开routing key的topic exchange,例如:

    "stock.usd.nyse" "nyse.vmw"

    和direct exchange一样,在接受者那边绑定的key与发送时指定的routing key相同即可,另外有些特殊的值:

    * 代表1个单词
    # 代表0个或多个单词

    如果发送者发出的routing key都是3个部分的,如:celerity.colour.species。

    Q1:
    *.orange.*  对应的是中间的colour都为orange的
    
    Q2:
    *.*.rabbit  对应的是最后部分的species为rabbit的
    lazy.#      对应的是第一部分是lazy的

    qucik.orange.rabbit Q1 Q2都可接收到,quick.orange.fox 只有Q1能接受到,对于lazy.pink.rabbit虽然匹配到了Q2两次,但是只会发送一次。如果绑定时直接绑定#,则会收到所有的。

    RPC

    在远程机器上运行一个函数然后获得结果。

    1、客户端启动 同时设置一个临时队列用于接受回调,绑定该队列

     self.connection = pika.BlockingConnection(pika.ConnectionParameters(
                host='localhost'))
        self.channel = self.connection.channel()
        result = self.channel.queue_declare(exclusive=True)
        self.callback_queue = result.method.queue
        self.channel.basic_consume(self.on_response, no_ack=True,
                                   queue=self.callback_queue)

    2、客户端发送rpc请求,同时附带reply_to对应回调队列,correlation_id设置为每个请求的唯一id(虽然说可以为每一次RPC请求都创建一个回调队列,但是这样效率不高,如果一个客户端只使用一个队列,则需要使用correlation_id来匹配是哪个请求),之后阻塞在回调队列直到收到回复

    注意:如果收到了非法的correlation_id直接丢弃即可,因为有这种情况--服务器已经发了响应但是还没发ack就挂了,等一会服务器重启了又会重新处理该任务,又发了一遍相应,但是这时那个请求已经被处理掉了

    channel.basic_publish(exchange='',
                           routing_key='rpc_queue',
                           properties=pika.BasicProperties(
                                 reply_to = self.callback_queue,
                                 correlation_id = self.corr_id,
                                 ),
                           body=str(n))  # 发出调用
    
    while self.response is None:  # 这边就相当于阻塞了
        self.connection.process_data_events()  # 查看回调队列
    return int(self.response)

    3、请求会发送到rpc_queue队列
    4、RPC服务器从rpc_queue中取出,执行,发送回复

    channel.basic_consume(on_request, queue='rpc_queue')  # 绑定 等待请求
    
    # 处理之后:
    ch.basic_publish(exchange='',
                     routing_key=props.reply_to,
                     properties=pika.BasicProperties(correlation_id = 
                                                         props.correlation_id),
                     body=str(response))  # 发送回复到回调队列
    ch.basic_ack(delivery_tag = method.delivery_tag)  # 发送ack

    5、客户端从回调队列中取出数据,检查correlation_id,执行相应操作

    if self.corr_id == props.correlation_id:
            self.response = body
  • 相关阅读:
    robotframework +selenium 自动化测试之浏览器与驱动的兼容问题。
    robotframework+selenium自动化robotramework版本问题
    一个业务逻辑引发的对多表连接的思考
    第一次接触WebSocket遇到的坑以及感受
    关于读写APP.config文件能读却写不了的问题
    poj2392 space elevator
    洛谷P1197 星球大战
    poj3421&poj3292&poj2689 基础数论
    洛谷P1006 传纸条
    挑战程序设计竞赛2.3节习题选解
  • 原文地址:https://www.cnblogs.com/ctztake/p/8512563.html
Copyright © 2020-2023  润新知