• AbstractQueuedSynchronizer


    一、概述

    AQS的框架

    AQS维护了一个volatile的共享资源变量state和一个FIFO线程等待队列,双链表

    资源的使用方式分为独占式和共享式2种

    独占式:只有单个线程可以获取资源并执行,如ReentrantLock

    共享式:多个线程可以获取资源并执行,如Semaphore、CountDownLatch

    AQS将大部分的同步逻辑均已经实现好,继承的自定义同步器只需要实现state的获取(acquire)和释放(release)的逻辑代码就可以

    核心方法:acquire()核心中的核心、addWaiter()、enq()、doReleaseShared()、doAcquireShared()、acquireQueued()

    二、源码

    1、父类

    public abstract class AbstractOwnableSynchronizer implements java.io.Serializable {
    
        private static final long serialVersionUID = 3737899427754241961L;
    
        protected AbstractOwnableSynchronizer() { }
    
        //独占模式下的当前线程
        private transient Thread exclusiveOwnerThread;
    
        protected final void setExclusiveOwnerThread(Thread thread) {
            exclusiveOwnerThread = thread;
        }
    
        protected final Thread getExclusiveOwnerThread() {
            return exclusiveOwnerThread;
        }
    }
    

    2、内置Node

    static final class Node {
    
        //表示一个节点在共享模式下等待
        static final Node SHARED = new Node();
        //表示一个节点在排他模式下等待
        static final Node EXCLUSIVE = null;
        //等待状态值,表示节点已取消调度,当timeout或中断后节点会变为此状态,之后状态不会再变化
        static final int CANCELLED =  1;
        //等待状态值,表示后继节点在等待当前节点唤醒,后继节点入队时会将前继节点更新为SIGNAL
        static final int SIGNAL    = -1;
        //等待状态值,表示节点等待在Condition上,当其他线程调用了Condition的signal()后,CONDITION状态的节点将从等待队列转移到同步队列中,等待获取同步锁
        static final int CONDITION = -2;
        //等待状态值,表示在共享模式下,前继结点不仅会唤醒其后继结点,同时也可能会唤醒后继的后继结点
        static final int PROPAGATE = -3;
    
        //状态字段,只可能是SIGNAL、CANCELLED、CONDITION、PROPAGATE、0(新节点入队时的默认状态)
        volatile int waitStatus;
        //上一个节点
        volatile Node prev;
        //下一个节点
        volatile Node next;
        //加入此节点的线程
        volatile Thread thread;
        //下一个等待的节点
        Node nextWaiter;
        //如果节点在共享模式下等待就返回true
        final boolean isShared() {
            return nextWaiter == SHARED;
        }
        //返回上一个节点
        final Node predecessor() throws NullPointerException {
            Node p = prev;
            if (p == null)
                throw new NullPointerException();
            else
                return p;
        }
    
        Node() {   
        }
        //被addWaiter使用
        Node(Thread thread, Node mode) {   
            this.nextWaiter = mode;
            this.thread = thread;
        }
        //被Condition使用
        Node(Thread thread, int waitStatus) { 
            this.waitStatus = waitStatus;
            this.thread = thread;
        }
    }
    

    3、属性

    //队列的节点头
    private transient volatile Node head;
    //队列的节点尾
    private transient volatile Node tail;
    //同步状态
    private volatile int state;
    protected final int getState() {
        return state;
    }
    protected final void setState(int newState) {
        state = newState;
    }
    

    3、方法

    protected final boolean compareAndSetState(int expect, int update) {
        return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }
    

    原子更新state的状态,类似于获得许可,如果成功就可以占有锁,如果失败说明锁已经被其他对象占用

    unsafe.compareAndSwapInt是用CAS原理实现的,底层native的c代码是一个for循环,通过反射根据字段偏移去修改对象,之后会说Unsafe

    static final long spinForTimeoutThreshold = 1000L;
    

    作为自旋等待时间判断的忽略值,1000纳秒,当计算得出判断自旋等待还有不到1000纳秒就可以开始自旋的时候,直接进入自旋,因为1000纳秒已经非常小,非常短的时间等待无法做到十分精确,如果这时再进入等待反而会让自旋超时表现的不那么准确

    private Node enq(final Node node) {
        for (;;) {
            Node t = tail;
            if (t == null) {
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    

    将节点插入队列的末尾,如果是空队列就先创建队头然后再次循环,主要给后面的addWaiter使用

    这里当前节点是通过node.prev=t先接到前继节点的,如果compareAndSetTail争用成功,就通过t.next=node让前继节点接到当前节点,如果不成功说明并发竞争失败,就进入下一次循环接到新的tail节点后面

    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
    

    用当前线程构建一个节点,节点类型是独占或者共享的,尝试加入队尾,如果非空队列添加失败说明有并发,再进入enq自旋修改

    private void setHead(Node node) {
        head = node;
        node.thread = null;
        node.prev = null;
    }
    

    将节点设为队头,清空属性方便垃圾回收

    private void unparkSuccessor(Node node) {
    
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);
    
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }
    

    唤醒后继节点的线程,将当前节点的状态置0,如果后继节点为空或者已取消,就从tail队尾开始遍历,找离当前节点最近的可唤醒节点

    最后使用LockSupport唤醒线程,后面会说LockSupport

    private void doReleaseShared() {
    
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;
                    unparkSuccessor(h);
                }
                else if (ws == 0 && !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;
            }
            if (h == head)
                break;
        }
    }
    

    共享模式的核心唤醒函数,用来唤醒下个线程或者设置传播状态

    主要给releaseShared使用,在最开始是直接使用unparkSuccessor的,存在问题,所以用这个doReleaseShared方法包了一层,也增加了PROPAGATE状态,以后细说

    如果头结点的状态成功置0,就执行unparkSuccessor唤醒后继线程,如果头结点状态已经为0,就将头结点状态置为PROPAGATE,保证后继节点仍然可以被唤醒

    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head;
        setHead(node);
        if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
    

    这个类的作用是在共享锁获取成功后设置头节点,然后根据条件唤醒后继线程

    private void cancelAcquire(Node node) {
    
        if (node == null)
            return;
    
        node.thread = null;
    
        Node pred = node.prev;
        while (pred.waitStatus > 0)
            node.prev = pred = pred.prev;
    
        Node predNext = pred.next;
    
        node.waitStatus = Node.CANCELLED;
    
        if (node == tail && compareAndSetTail(node, pred)) {
            compareAndSetNext(pred, predNext, null);
        } else {
            int ws;
            if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                 (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
                Node next = node.next;
                if (next != null && next.waitStatus <= 0)
                    compareAndSetNext(pred, predNext, next);
            } else {
                unparkSuccessor(node);
            }
    
            node.next = node;
        }
    }
    

    取消某个节点获取锁,把当前节点状态置为CANCELLED,然后将节点移出队列,把后继和前继连接起来

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            return true;
        if (ws > 0) {
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    

    根据前驱节点的状态判断是否要让当前线程进入waiting状态

    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }
    

    让当前线程中断

    private final boolean parkAndCheckInterrupt() {
        LockSupport.park(this);
        return Thread.interrupted();
    }
    

    让线程进入等待状态

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    在队列中等待获取锁,核心方法

    private void doAcquireInterruptibly(int arg) throws InterruptedException {
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    和acquireQueued基本一样,增加了对中断异常的抛出

    private boolean doAcquireNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.EXCLUSIVE);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    在doAcquireInterruptibly的基础上增加超时等待的功能

    private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    共享锁版在队列中等待获取锁

    private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    增加了异常抛出

    private boolean doAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return true;
                    }
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    再增加超时等待

    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }
    protected boolean tryRelease(int arg) {
        throw new UnsupportedOperationException();
    }
    protected int tryAcquireShared(int arg) {
        throw new UnsupportedOperationException();
    }
    protected boolean tryReleaseShared(int arg) {
        throw new UnsupportedOperationException();
    }
    protected boolean isHeldExclusively() {
        throw new UnsupportedOperationException();
    }
    

    分别是尝试获取独占锁、尝试释放独占锁、尝试获取共享锁、尝试释放共享锁、当前是否获得独占锁(只有用到condition才需要实现)

    AQS实现了框架,并通过模板方法开放了以上方法,具体资源的获取释放方式需要自定义的同步器来重写完成,没有使用abstract是因为独占锁只需要实现tryAcquire和tryRelease,不用实现其它的,共享锁同理

    如何实现之后看具体的同步器

    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    

    独占模式下获取锁的顶层入口,线程如果取到资源就直接返回,如果没有取到就进入等待队列,直到取到资源,这就是lock()的语义

    先通过tryAcquire去尝试获取资源,如果成功就返回,如果失败就通过addWaiter将独占状态的自身节点加入队列尾部,然后acquireQueued进入等待队列,如果等待过程中中断了,会执行selfInterrupt将线程中断

    public final void acquireInterruptibly(int arg) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }
    public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
    }
    

    相应中断和相应中断+超时的acquire版本

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    

    释放资源的顶层入口,实现unlock的效果,当资源释放后会唤醒后继线程

    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
    public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }
    public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 || doAcquireSharedNanos(arg, nanosTimeout);
    }
    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
    

    共享锁版本的一套

    //是否有线程在等待锁
    public final boolean hasQueuedThreads() {
        return head != tail;
    }
    //是否有节点
    public final boolean hasContended() {
        return head != null;
    }
    //返回队列里第一个没有取到锁的线程
    public final Thread getFirstQueuedThread() {
        return (head == tail) ? null : fullGetFirstQueuedThread();
    }
    private Thread fullGetFirstQueuedThread() {
        Node h, s;
        Thread st;
        if (((h = head) != null && (s = h.next) != null &&
             s.prev == head && (st = s.thread) != null) ||
            ((h = head) != null && (s = h.next) != null &&
             s.prev == head && (st = s.thread) != null))
            return st;
    
        Node t = tail;
        Thread firstThread = null;
        while (t != null && t != head) {
            Thread tt = t.thread;
            if (tt != null)
                firstThread = tt;
            t = t.prev;
        }
        return firstThread;
    }
    //判断线程是否在队列里
    public final boolean isQueued(Thread thread) {
        if (thread == null)
            throw new NullPointerException();
        for (Node p = tail; p != null; p = p.prev)
            if (p.thread == thread)
                return true;
        return false;
    }
    final boolean apparentlyFirstQueuedIsExclusive() {
        Node h, s;
        return (h = head) != null &&
            (s = h.next)  != null &&
            !s.isShared()         &&
            s.thread != null;
    }
    //判断当前线程是否在队列的队首
    public final boolean hasQueuedPredecessors() {
        Node t = tail;
        Node h = head;
        Node s;
        return h != t && ((s = h.next) == null || s.thread != Thread.currentThread());
    }
    //返回等待这个锁的线程数量
    public final int getQueueLength() {
        int n = 0;
        for (Node p = tail; p != null; p = p.prev) {
            if (p.thread != null)
                ++n;
        }
        return n;
    }
    //返回队列里的线程
    public final Collection<Thread> getQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
        return list;
    }
    //返回队列里独占模式的线程
    public final Collection<Thread> getExclusiveQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (!p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }
    //返回队列里共享模式的线程
    public final Collection<Thread> getSharedQueuedThreads() {
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node p = tail; p != null; p = p.prev) {
            if (p.isShared()) {
                Thread t = p.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }
    public String toString() {
        int s = getState();
        String q  = hasQueuedThreads() ? "non" : "";
        return super.toString() +
            "[State = " + s + ", " + q + "empty queue]";
    }
    final boolean isOnSyncQueue(Node node) {
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        if (node.next != null) // If has successor, it must be on queue
            return true;
        return findNodeFromTail(node);
    }
    private boolean findNodeFromTail(Node node) {
        Node t = tail;
        for (;;) {
            if (t == node)
                return true;
            if (t == null)
                return false;
            t = t.prev;
        }
    }
    final boolean transferForSignal(Node node) {
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;
    
        Node p = enq(node);
        int ws = p.waitStatus;
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }
    final boolean transferAfterCancelledWait(Node node) {
        if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
            enq(node);
            return true;
        }
    
        while (!isOnSyncQueue(node))
            Thread.yield();
        return false;
    }
    final int fullyRelease(Node node) {
        boolean failed = true;
        try {
            int savedState = getState();
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }
    public final boolean owns(ConditionObject condition) {
        return condition.isOwnedBy(this);
    }
    public final boolean hasWaiters(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.hasWaiters();
    }
    public final int getWaitQueueLength(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitQueueLength();
    }
    public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
        if (!owns(condition))
            throw new IllegalArgumentException("Not owner");
        return condition.getWaitingThreads();
    }
    

    AQS提供的一些辅助函数

    5、内置ConditionObject

    Condition链接

    6、unsafe

    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long stateOffset;
    private static final long headOffset;
    private static final long tailOffset;
    private static final long waitStatusOffset;
    private static final long nextOffset;
    
    static {
        try {
            stateOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
            headOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
            tailOffset = unsafe.objectFieldOffset(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
            waitStatusOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("waitStatus"));
            nextOffset = unsafe.objectFieldOffset(Node.class.getDeclaredField("next"));
    
        } catch (Exception ex) { throw new Error(ex); }
    }
    
    private final boolean compareAndSetHead(Node update) {
        return unsafe.compareAndSwapObject(this, headOffset, null, update);
    }
    
    private final boolean compareAndSetTail(Node expect, Node update) {
        return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
    }
    
    private static final boolean compareAndSetWaitStatus(Node node, int expect, int update) {
        return unsafe.compareAndSwapInt(node, waitStatusOffset, expect, update);
    }
    
    private static final boolean compareAndSetNext(Node node, Node expect, Node update) {
        return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
    }
    

    通过底层方法实现了对state、head、tail、waitStatus、next的原子操作方法,如果返回true则操作成功,如果返回false表示存在争用,操作失败

  • 相关阅读:
    微信小程序里自定义组件,canvas组件没有效果
    微信小程序填坑之路(三):布局适配方案(rpx、px、vw、vh)
    小程序checkbox调整大小
    css让文字竖着排列 writing-mode 属性
    微信小程序 位置定位position详解,相对定位relative,绝对定位absolute相关问题
    小程序国际化实现方式
    mybatis plus 学习
    cesium js学习一加载三维模型【转】
    cesiumjs学习笔记之三——cesium-navigation插件 【转】
    局域网Cesium离线影像及瓦片影像地图加载【转】
  • 原文地址:https://www.cnblogs.com/ctxsdhy/p/12405894.html
Copyright © 2020-2023  润新知