• Malek Dance Club(递推)


    Malek Dance Club
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    As a tradition, every year before IOI all the members of Natalia Fan Club are invited to Malek Dance Club to have a fun night together. Malek Dance Club has 2n members and coincidentally Natalia Fan Club also has 2nmembers. Each member of MDC is assigned a unique id i from 0 to 2n - 1. The same holds for each member of NFC.

    One of the parts of this tradition is one by one dance, where each member of MDC dances with a member of NFC. A dance pair is a pair of numbers (a, b) such that member a from MDC dances with member b from NFC.

    The complexity of a pairs' assignment is the number of pairs of dancing pairs (a, b) and (c, d) such that a < c andb > d.

    You are given a binary number of length n named x. We know that member i from MDC dances with member  from NFC. Your task is to calculate the complexity of this assignment modulo 1000000007 (109 + 7).

    Expression  denotes applying «XOR» to numbers x and y. This operation exists in all modern programming languages, for example, in C++ and Java it denotes as «^», in Pascal — «xor».

    注意到n很小,如果能够求出递推公式,问题将很容易得到解决。

    x长度为n,f(x)表示complexity,显然f(0)=0,f(1)=1。当n>1时,f(0x)和f(1x)可由f(x)推出。

    (1)求f(0x): i 分别取 0,1,...,2^n-1,j分别取2^n,...,2^(n+1) - 1, 统计(i,i  xor 0x)与(j, j xor 0x)能组成多少对,注意j xor 0x的第一位是1,而i xor 0x的第一位是0,故而 j xor 0x > i  xor 0x,而 j > i,故(i,i  xor 0x)与(j, j xor 0x)不能配对。统计(j, j xor 0x)内部能组成多少对,所有j的第一位相同, 导致j xor 0x的第一位都相同,故而j的第一位是没有比较意义的,去掉没有影响,故(j, j xor 0x)的配对数为f(x)。所以f(0x)=2f(x)

    (2)求f(1x):  i 分别取 0,1,...,2^n-1,j分别取2^n,...,2^(n+1) - 1, 统计(i,i  xor 1x)与(j, j xor 1x)能组成多少对,注意j xor 1x的第一位是0,而i xor 1x的第一位是1,故而 i  xor 1x > j xor 1x ,而 i < j,故(i,i  xor 1x)与(j, j xor 1x)之间能产生2^(2n)对。统计(j, j xor 0x)内部能组成多少对,所有j的第一位都相同, 导致j xor 1x的第一位都相同,故而j的第一位是没有比较意义的,去掉没有影响,故(j, j xor 0x)的配对数为f(x)。所以f(1x)=2f(x)+2^(2n)

    综上:

    • f(0x) = 2f(x)
    • f(1x) = 2f(x) + 2^2n
     1 #include <iostream>
     2 #include <string>
     3 #include <algorithm>
     4 #include <map>
     5 #include <vector>
     6 #include <cstdio>
     7 #include <cmath>
     8 #include <cstring>
     9 using namespace std;
    10 
    11 char x[101];
    12 const int m = 1000000007;
    13 int n;
    14 
    15 long long POW(long long a, long long b)
    16 {
    17     if(!b) return 1;
    18     long long c = POW(a, b>>1);
    19     c = (c * c) % m;
    20     if(b & 1)
    21     {
    22         c = (c * a) % m;
    23     }
    24     return c;
    25 }
    26 
    27 int f(int k)
    28 {
    29     if(k == n - 1)
    30     {
    31         if(x[k] == '0') return 0;
    32         else return 1;
    33     }
    34     if(x[k] == '0') return (2 * f(k + 1)) % m;
    35     else return ((2 * f(k + 1)) % m + POW(4, n - k - 1)) % m;
    36 }
    37 
    38 int main()
    39 {
    40     while(scanf("%s", x) != EOF)
    41     {
    42         n = strlen(x);
    43         printf("%d
    ", f(0));
    44     }
    45     return 0;
    46 }
  • 相关阅读:
    如何正确得到某个元素的位置
    jQuery Tags Input Plugin(添加/删除标签插件)
    [转载]舒迅:产品经理必读的九步法
    不间断循环滚动代码
    jquery validate api
    jquery文件上传控件 Uploadify
    关于CSS权重问题
    css中fontfamily的中文字体
    expression解决IE6下固定定位的兼容
    模拟下拉select
  • 原文地址:https://www.cnblogs.com/cszlg/p/3248789.html
Copyright © 2020-2023  润新知