• Jugs(回溯法)


    ZOJ Problem Set - 1005
    Jugs

    Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

    In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were confronted with the following puzzle. They were given a 3-gallon jug and a 5-gallon jug and were asked to fill the 5-gallon jug with exactly 4 gallons. This problem generalizes that puzzle.

    You have two jugs, A and B, and an infinite supply of water. There are three types of actions that you can use: (1) you can fill a jug, (2) you can empty a jug, and (3) you can pour from one jug to the other. Pouring from one jug to the other stops when the first jug is empty or the second jug is full, whichever comes first. For example, if A has 5 gallons and B has 6 gallons and a capacity of 8, then pouring from A to B leaves B full and 3 gallons in A.

    A problem is given by a triple (Ca,Cb,N), where Ca and Cb are the capacities of the jugs A and B, respectively, and N is the goal. A solution is a sequence of steps that leaves exactly N gallons in jug B. The possible steps are

    fill A 
    fill B 
    empty A 
    empty B 
    pour A B 
    pour B A 
    success

    where "pour A B" means "pour the contents of jug A into jug B", and "success" means that the goal has been accomplished.

    You may assume that the input you are given does have a solution.

    Input

    Input to your program consists of a series of input lines each defining one puzzle. Input for each puzzle is a single line of three positive integers: Ca, Cb, and N. Ca and Cb are the capacities of jugs A and B, and N is the goal. You can assume 0 < Ca <= Cb and N <= Cb <=1000 and that A and B are relatively prime to one another.

    Output

    Output from your program will consist of a series of instructions from the list of the potential output lines which will result in either of the jugs containing exactly N gallons of water. The last line of output for each puzzle should be the line "success". Output lines start in column 1 and there should be no empty lines nor any trailing spaces.

    Sample Input

    3 5 4
    5 7 3
    
    

    Sample Output

    fill B
    pour B A
    empty A
    pour B A
    fill B
    pour B A
    success
    fill A
    pour A B
    fill A
    pour A B
    empty B
    pour A B
    success

    思路:用二元组(a,b)记录每一次操作后A和B的状态(gallon数),一个状态元组不能重复出现,不然会不断循环。

    AC Code:
      1 #include <iostream>
      2 #include <map>
      3 #include <cstdio>
      4 
      5 using namespace std;
      6 
      7 const int SZ = 10000;
      8 int op[SZ];
      9 //op is for "operation". 1:fill A,2:fill B,3:empty A,4:empty B,5:pour A B,6:pour B A,0:success
     10 int ca, cb, n;
     11 map<pair<int, int>, bool> tag;
     12 
     13 
     14 bool DFS(int a, int b, int k)  //a和b分别是A和B的gallon数,k是op的下标
     15 {
     16     pair<int, int> p = make_pair(a, b);
     17     if(tag[p]) return false;
     18     tag[p] = true;
     19     if(b == n)
     20     {
     21         op[k] = 0;
     22         return true;
     23     }
     24     if(a < ca) //fill A
     25     {
     26         op[k] = 1;
     27         if(DFS(ca, b, k + 1)) return true;
     28     }
     29     if(b < cb)  //fill B
     30     {
     31         op[k] = 2;
     32         if(DFS(a, cb, k + 1)) return true;
     33     }
     34     if(a)  //empty A
     35     {
     36         op[k] = 3;
     37         if(DFS(0, b, k + 1)) return true;
     38     }
     39     if(b)  //empty B
     40     {
     41         op[k] = 4;
     42         if(DFS(a, 0, k + 1)) return true;
     43     }
     44     if(a && b < cb)  //pour A B
     45     {
     46         op[k] = 5;
     47         int ra, rb;
     48         if(a > cb - b)
     49         {
     50             rb = cb;
     51             ra = a - (cb - b);
     52         }
     53         else
     54         {
     55             ra = 0;
     56             rb = b + a;
     57         }
     58         if(DFS(ra, rb, k + 1)) return true;
     59     }
     60     if(b && a < ca)  //pour B A
     61     {
     62         op[k] = 6;
     63         int ra, rb;
     64         if(b > ca - a)
     65         {
     66             ra = ca;
     67             rb = b - (ca - a);
     68         }
     69         else
     70         {
     71             rb = 0;
     72             ra = b + a;
     73         }
     74         if(DFS(ra, rb, k + 1)) return true;
     75     }
     76     return false;
     77 }
     78 
     79 int main()
     80 {
     81     while(scanf("%d %d %d", &ca, &cb, &n) != EOF)
     82     {
     83         tag.clear();
     84         bool flag = DFS(0, 0, 0);
     85         for(int i = 0; op[i]; i++)
     86         {
     87             switch(op[i])
     88             {
     89             case 1:
     90                 puts("fill A");
     91                 break;
     92             case 2:
     93                 puts("fill B");
     94                 break;
     95             case 3:
     96                 puts("empty A");
     97                 break;
     98             case 4:
     99                 puts("empty B");
    100                 break;
    101             case 5:
    102                 puts("pour A B");
    103                 break;
    104             case 6:
    105                 puts("pour B A");
    106                 break;
    107             default:
    108                 break;
    109             }
    110         }
    111         puts("success");
    112     }
    113     return 0;
    114 }
     
     

  • 相关阅读:
    spring boot 配置示例
    MyBatis 常用标签用法
    http请求头部常用参数
    CentOS7使用firewalld打开关闭防火墙与端口
    java8 base64
    MD5工具类
    各种远程登录工具
    MySql 常用命令
    spring-boot-mybaits 开启事务
    springboot 项目打包到 linux下无法 运行
  • 原文地址:https://www.cnblogs.com/cszlg/p/3213508.html
Copyright © 2020-2023  润新知