• A Simple Problem with Integers(线段树区间更新模板题)


    A Simple Problem with Integers
    Time Limit:5000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u
    Submit Status

    Description

    You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of AaAa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15

    Hint

    The sums may exceed the range of 32-bit integers.
     
      1 //Memory: 4324 KB        Time: 1594 MS
      2 //Language: C++        Result: Accepted
      3 
      4 #include <iostream>
      5 #include <cstdio>
      6 
      7 using namespace std;
      8 
      9 typedef long long ll;
     10 #define ls rt<<1
     11 #define rs rt<<1|1
     12 
     13 const int sz = 100001;
     14 struct Tree
     15 {
     16      ll sum, inc;
     17 }t[sz<<2];
     18 ll d, ans;
     19 
     20 void build(const int left, const int right, const int rt)
     21 {
     22     t[rt].inc = 0;
     23     if(right == left)
     24     {
     25         scanf("%I64d", &t[rt].sum);
     26         return ;
     27     }
     28     int mid = (right + left) >> 1;
     29     build(left, mid, ls);
     30     build(mid + 1, right, rs);
     31     t[rt].sum = t[ls].sum + t[rs].sum;
     32     return ;
     33 }
     34 
     35 void update(const int l, const int r, const int from, const int to, const int rt)
     36 {
     37     if(from <= l && r <= to)
     38     {
     39         t[rt].inc += d;
     40         t[rt].sum += ((ll)(r - l + 1) * d);  //(1)
     41         return ;
     42     }
     43     if(t[rt].inc)
     44     {
     45         t[ls].inc += t[rt].inc;
     46         t[rs].inc += t[rt].inc;
     47         t[ls].sum += ((ll)((r - l + 2) >> 1) * t[rt].inc);  //(2)
     48         t[rs].sum += ((ll)((r - l + 1) >> 1) * t[rt].inc);
     49         t[rt].inc = 0;
     50     }
     51     int mid = (l + r) >> 1;
     52     if(from <= mid) update(l, mid, from, to, ls);
     53     if(to > mid) update(mid + 1, r, from, to, rs);
     54     t[rt].sum = t[ls].sum + t[rs].sum;
     55     return ;
     56 }
     57 
     58 void query(const int l, const int r, const int from, const int to, const int rt)
     59 {
     60     if(from <= l && r <= to)
     61     {
     62         ans += t[rt].sum;
     63         return ;
     64     }
     65     if(t[rt].inc)
     66     {
     67         t[ls].inc += t[rt].inc;
     68         t[rs].inc += t[rt].inc;
     69         t[ls].sum += ((ll)((r - l + 2) >> 1) * t[rt].inc);
     70         t[rs].sum += ((ll)((r - l + 1) >> 1) * t[rt].inc);
     71         t[rt].inc = 0;
     72     }
     73     int mid = (l + r) >> 1;
     74     if(from <= mid) query(l, mid, from, to, ls);
     75     if(to > mid) query(mid + 1, r, from, to, rs);
     76     return ;
     77 }
     78 
     79 int main()
     80 {
     81     int q, n, a, b;
     82     char cmd;
     83     while(scanf("%d %d", &n, &q) != EOF)
     84     {
     85         build(1, n, 1);
     86         while(q--)
     87         {
     88             cin >> cmd;
     89             if(cmd == 'Q')
     90             {
     91                 scanf("%d %d", &a, &b);
     92                 ans = 0;
     93                 query(1, n, a, b, 1);
     94                 printf("%I64d\n", ans);
     95             }
     96             else
     97             {
     98                 scanf("%d %d %I64d", &a, &b, &d);
     99                 update(1, n, a, b, 1);
    100             }
    101         }
    102     }
    103     return 0;
    104 }
    105 /*
    106 (1) *d而非*t[rt].inc,因为t[rt].inc是保存rt的儿子的更新数据的,到达rt的更新是d
    107 (2) *t[rt].inc而非*t[ls].inc,因为t[ls].inc是保存ls的儿子的更新数据的。到达ls的更新是
    108 t[rt].inc.(r - l + 2) >> 1是ls的左儿子的区间长度,(r - l + 1) >> 1是右儿子的区间长度。
    109 实际上(r - l + 2) >> 1是(r - l + 1) / 2.0的向上取整。注意由于在build中,mid归于左儿子,
    110 故左儿子的区间长度>=右儿子区间长度
    111 */
  • 相关阅读:
    Sql Server 收缩日志文件原理及always on 下的实践
    SQL Agent服务无法启动如何破
    Sql Server Always On 读写分离配置方法
    SQL SERVER 9003错误解决方法 只适用于SQL2000
    SQL Server 数据库分离与附加
    SQL SERVER 的模糊查询 LIKE
    sqlserver 时间格式函数详细
    浅谈SQL Server中的三种物理连接操作
    谈一谈SQL Server中的执行计划缓存(下)
    asp.net获取当前系统的时间
  • 原文地址:https://www.cnblogs.com/cszlg/p/3072419.html
Copyright © 2020-2023  润新知