Consider an n × m grid. Initially all the cells of the grid are colored white. Lenny has painted some of the cells (at least one) black. We call a painted grid convex if one can walk from any black cell to any another black cell using a path of side-adjacent black cells changing his direction at most once during the path. In the figure below, the left grid is convex while the right one is not convex, because there exist two cells which need more than one time to change direction in their path.
You're given a painted grid in the input. Tell Lenny if the grid is convex or not.
The first line of the input contains two integers n and m (1 ≤ n, m ≤ 50) — the size of the grid. Each of the next n lines contains m characters "B" or "W". Character "B" denotes a black cell of the grid and "W" denotes a white cell of the grid.
It's guaranteed that the grid has at least one black cell.
On the only line of the output print "YES" if the grid is convex, otherwise print "NO". Do not print quotes.
3 4
WWBW
BWWW
WWWB
NO
3 1
B
B
W
YES
看完题的第一想法是:暴力解决,因为数据量实在小。
对于两个黑块(i0, j0)和(i1, j1)
如果 i0 == i1,不需转弯,检测从j0到j1是否存在w即可,当j0 == j1时类似。
如果 i0 != i1 && j0 != j1,则由(i0, j0)经(i1, j0)到(i1,j1)或由(i0, j0)经(i0, j1)到(i1,j1)。
思路很简单,代码丑了点。。。
AC Code:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 5 using namespace std; 6 7 int m, n; 8 char map[51][51]; 9 10 bool Judge(int i0, int j0) 11 { 12 for(int i1 = 0; i1 < n; i1++) 13 for(int j1 = 0; j1 < m; j1++) 14 { 15 if(map[i1][j1] == 'B' && (i1 != i0 || j1 != j0)) 16 { 17 //以下判断(i0, j0)能否至多经一次转弯到达(i1, j1) 18 if(i1 == i0) //不需转弯 19 { 20 int d = j1 > j0 ? 1 : -1; 21 for(int k = j0 + d; ; k += d) 22 { 23 if(map[i0][k] == 'W') return false; 24 if(k == j1) break; 25 } 26 } 27 else if(j1 == j0) //不需转弯 28 { 29 int d = i1 > i0 ? 1 : -1; 30 for(int k = i0 + d; ; k += d) 31 { 32 if(map[k][j0] == 'W') return false; 33 if(k == i1) break; 34 } 35 } 36 else //两个可能的转弯点(i0, j1)和(i1, j0) 37 { 38 bool tag = true; 39 int k, d; 40 //由(i0, j0)经(i1, j0)到(i1,j1) 41 d = i1 > i0 ? 1 : -1; 42 for(k = i0 + d; ; k += d) 43 { 44 if(map[k][j0] == 'W') 45 { 46 tag = false; 47 break; 48 } 49 if(k == i1) break; 50 } 51 if(tag) 52 { 53 d = j1 > j0 ? 1 : -1; 54 for(k = j0 + d; ; k += d) 55 { 56 if(map[i1][k] == 'W') 57 { 58 tag = false; 59 break; 60 } 61 if(k == j1) break; 62 } 63 } 64 if(!tag) 65 { 66 tag = true; 67 //由(i0, j0)经(i0, j1)到(i1,j1) 68 d = j1 > j0 ? 1 : -1; 69 for(k = j0 + d; ; k += d) 70 { 71 if(map[i0][k] == 'W') 72 { 73 tag = false; 74 break; 75 } 76 if(k == j1) break; 77 } 78 if(tag) 79 { 80 d = i1 > i0 ? 1 : -1; 81 for(k = i0 + d; ; k += d) 82 { 83 if(map[k][j1] == 'W') 84 { 85 tag = false; 86 break; 87 } 88 if(k == i1) break; 89 } 90 } 91 } 92 if(!tag) return false; 93 } 94 } 95 } 96 return true; 97 } 98 99 int main() 100 { 101 bool ok; 102 while(scanf("%d %d", &n, &m) != EOF) 103 { 104 ok = true; 105 for(int i = 0; i < n; i++) 106 scanf("%s", map[i]); 107 for(int i = 0; i < n && ok; i++) 108 { 109 for(int j = 0; j < m && ok; j++) 110 { 111 if(map[i][j] == 'B') 112 ok = Judge(i, j); 113 } 114 } 115 if(ok) puts("YES"); 116 else puts("NO"); 117 } 118 return 0; 119 }