• 2017 ACM/ICPC 沈阳 L题 Tree


    Consider a un-rooted tree T which is not the biological significance of tree or plant, but a tree as an undirected graph in graph theory with n nodes, labelled from 1 to n. If you cannot understand the concept of a tree here, please omit this problem. 
    Now we decide to colour its nodes with k distinct colours, labelled from 1 to k. Then for each colour i = 1, 2, · · · , k, define Ei as the minimum subset of edges connecting all nodes coloured by i. If there is no node of the tree coloured by a specified colour i, Ei will be empty. 
    Try to decide a colour scheme to maximize the size of E1 ∩ E2 · · · ∩ Ek, and output its size.

    InputThe first line of input contains an integer T (1 ≤ T ≤ 1000), indicating the total number of test cases. 
    For each case, the first line contains two positive integers n which is the size of the tree and k (k ≤ 500) which is the number of colours. Each of the following n - 1 lines contains two integers x and y describing an edge between them. We are sure that the given graph is a tree. 
    The summation of n in input is smaller than or equal to 200000. 
    OutputFor each test case, output the maximum size of E1 ∩ E1 ... ∩ Ek.Sample Input

    3
    4 2
    1 2
    2 3
    3 4
    4 2
    1 2
    1 3
    1 4
    6 3
    1 2
    2 3
    3 4
    3 5
    6 2

    Sample Output

    1
    0
    1
    题解:考虑某条边,则只要两边的2个顶点都大于等于k,则连边时一定会经过这条边,ans++;

    参看代码:
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define clr(a,b,n) memset((a),(b),sizeof(int)*n)
     4 typedef long long ll;
     5 const int maxn = 2e5+10;
     6 int n,k,ans,num[maxn];
     7 vector<int> vec[maxn];
     8 
     9 void dfs(int u,int fa)
    10 {
    11     num[u]=1;
    12     for(int i=0;i<vec[u].size();i++)
    13     {
    14         int v=vec[u][i];
    15         if(v==fa) continue;
    16         dfs(v,u);
    17         num[u]+=num[v];
    18         if(num[v]>=k&&n-num[v]>=k) ans++;
    19     }
    20 }
    21 
    22 int main()
    23 {
    24     int T,u,v;
    25     scanf("%d",&T);
    26     while(T--)
    27     {
    28         scanf("%d%d",&n,&k);
    29         clr(num,0,n+1); ans=0;
    30         for(int i=1;i<=n;i++) vec[i].clear();
    31         for(int i=1;i<n;i++)
    32         {
    33             scanf("%d%d",&u,&v);
    34             vec[u].push_back(v);
    35             vec[v].push_back(u);
    36         }
    37         dfs(1,-1);
    38         //for(int i=1;i<=n;++i) cout<<num[i]<<endl;
    39         printf("%d
    ",ans);
    40     }
    41     return 0;
    42 }
    View Code

      

  • 相关阅读:
    java工具类4-分布式id生成器
    java工具类3-签名加密
    java工具类2-获取文件base64
    Java SE入门(十)——继承与抽象
    Java SE入门(九)——静态和代码块
    Java SE入门(八)——IO流基础
    Java SE入门(七)——Java集合与实例
    Java SE入门(六)——常用基础API
    Java SE入门(五)——面向对象基础
    Java SE入门(四)——函数与方法
  • 原文地址:https://www.cnblogs.com/csushl/p/9784973.html
Copyright © 2020-2023  润新知