• HDU 5113 Black And White


    Black And White

    Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others)
    Total Submission(s): 5859    Accepted Submission(s): 1615
    Special Judge


    Problem Description
    In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
    — Wikipedia, the free encyclopedia

    In this problem, you have to solve the 4-color problem. Hey, I’m just joking.

    You are asked to solve a similar problem:

    Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly ci cells.

    Matt hopes you can tell him a possible coloring.
     
    Input
    The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.

    For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).

    The second line contains K integers ci (ci > 0), denoting the number of cells where the i-th color should be used.

    It’s guaranteed that c1 + c2 + · · · + cK = N × M .
     
    Output
    For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).

    In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.

    If there are multiple solutions, output any of them.
     
    Sample Input
    4 1 5 2 4 1 3 3 4 1 2 2 4 2 3 3 2 2 2 3 2 3 2 2 2
     
    Sample Output
    Case #1: NO Case #2: YES 4 3 4 2 1 2 4 3 4 Case #3: YES 1 2 3 2 3 1 Case #4: YES 1 2 2 3 3 1
     
    Source
    Recommend
    liuyiding
    题解:
    搜索+减枝优化(判断是否有颜色的数量超过剩下的方格数量的一半)
    参考代码:
     1 #include <bits/stdc++.h>
     2 #define INF 0x3f3f3f3f
     3 #define eps 1e-9
     4 #define rep(i,a,n) for(int i=a;i<n;++i)
     5 #define per(i,a,n) for(int i=n-1;i>=a;--i)
     6 #define fi first
     7 #define se second
     8 #define pb push_back
     9 #define np next_permutation
    10 #define mp make_pair
    11 using namespace std;
    12 const int maxn=1e5+5;
    13 const int maxm=1e5+5;
    14 
    15 int t,n,m,k,flag;
    16 //dfs 找方案剪枝
    17 int dp[10][10],c[100];
    18 bool check1(int x,int y,int i)
    19 {
    20     if(x-1>=1 && dp[x-1][y]==i) return false;
    21     if(y-1>=1 && dp[x][y-1]==i) return false;
    22     return true;
    23 }
    24 void dfs(int x,int y,int le)
    25 {
    26     rep(i,1,k+1) if(c[i]>(le+1)/2) return;
    27     if(flag) return;
    28     if(x==n+1) { flag=1; return; }
    29     for(int i=1;i<=k;i++)
    30     {
    31         if(c[i])
    32         {
    33             if(check1(x,y,i))
    34             {
    35                 c[i]--;
    36                 dp[x][y] = i;
    37                 if(y==m) dfs(x+1,1,le-1);
    38                 else dfs(x,y+1,le-1);
    39                 if(flag) return;
    40                 c[i]++; dp[x][y] = 0;
    41             }
    42         }
    43     }
    44 } 
    45 int main()
    46 {
    47     scanf("%d",&t);
    48     rep(tt,1,t+1)
    49     {
    50         flag=0;
    51         memset(dp,0,sizeof(dp));
    52         scanf("%d%d%d",&n,&m,&k);
    53         rep(i,1,k+1) scanf("%d",c+i);
    54         dfs(1,1,n*m);
    55         printf("Case #%d:
    ",tt);
    56         if(flag)
    57         {
    58             printf("YES");
    59             rep(i,1,n+1)
    60             {
    61                 rep(j,1,m) printf("%d ",dp[i][j]);
    62                 printf("%d
    ",dp[i][m]);
    63             }
    64         }
    65         else printf("YES");
    66     }
    67     return 0;
    68 } 
    69   
    View Code
  • 相关阅读:
    Java面试题及答案整理(持续更新)
    CentOS6.4-mini系统服务列表
    Linux内核编译,模块尺寸变大的解决办法
    Configuration Opennebula3.8 & 4.x Virtual Machines Contextualizing
    CentOS6.3上Opennebula 3.8 VLAN配置
    Ubuntu 12.04 LTS主机名、IP、DNS配置总结
    Linux su
    Git安装配置总结
    Linux CentOS添加163yum源
    Linux 内核编译 modules ehci-hcd, ohci-hcd, uhci-hcd not found
  • 原文地址:https://www.cnblogs.com/csushl/p/9710553.html
Copyright © 2020-2023  润新知