• POJ1458 Subsquence


    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, x ij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    题解:DP,最大公共子序列;dp[i][j]表示第一个串的第i个字符,第二个串的第j个字符所能匹配的最长公共子串。if s1[i]==s2[j] dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1])找最大值即可:
    参考代码为:
    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<cmath>
    #include<string>
    #include<algorithm>
    using namespace std;
    
    int main()
    {
    	string str1, str2;
    	while (cin >> str1 >> str2)
    	{
    		int l1 = str1.size();
    		int l2 = str2.size();
    		int dp[1010][1010]={0};
    		int Max = 0;
    
    		for (int i = 0; i<l1; i++)
    		{
    			for (int j = 0; j<l2; j++)
    			{
    				if (str1[i] == str2[j])
    				{
    					dp[i+1][j+1] = dp[i][j] + 1;
    					if (dp[i+1][j+1]>Max)
    						Max = dp[i+1][j+1];
    
    				}
    				else
    				{
    					dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]);
    					if (dp[i + 1][j + 1]>Max)
    						Max = dp[i + 1][j + 1];
    				}
    			}
    		}
    		cout << Max << endl;
    
    	}
    	return 0;
    }
    

      

  • 相关阅读:
    闭包的坑
    python中@property和property函数使用
    Python3运算符
    内置函数——eval、exec、compile
    内置函数和匿名函数
    迭代器和生成器
    PHP内置的字符串处理函数
    PHP中的抽象类和接口
    PHP面向对象中常用的关键字和魔术方法
    PHP面向对象的程序设计一些简单的概念
  • 原文地址:https://www.cnblogs.com/csushl/p/9409792.html
Copyright © 2020-2023  润新知