You are given string s consists of opening and closing brackets of four kinds <>,{}, [], (). There are two types of brackets: opening and closing. You can replace any bracket by another of the same type. For example, you can replace < by the bracket {, but you can't replace it by ) or >.
The following definition of a regular bracket sequence is well-known, so you can be familiar with it.
Let's define a regular bracket sequence (RBS). Empty string is RBS. Let s1 and s2 be a RBS then the strings <s1>s2, {s1}s2, [s1]s2, (s1)s2 are also RBS.
For example the string "[[(){}]<>]" is RBS, but the strings "[)()" and "][()()" are not.
Determine the least number of replaces to make the string s RBS.
InputThe only line contains a non empty string s, consisting of only opening and closing brackets of four kinds. The length of s does not exceed 106.
If it's impossible to get RBS from s print Impossible.
Otherwise print the least number of replaces needed to get RBS from s.
[<}){}
2
{()}[]
0
]]
Impossible
题目大意:给出一个括号序列,要求替换若干括号使原括号变成正则括号序列(即合法的匹配序列)。替换只能将左括号替换成不同类型的左括号,右括号替换成不同类型的右括号。问最少的替换个数,如果不存在这样的替换则输出 Impossible
题解:先打表,把情况列出来,然后用数组模拟栈操作
AC代码为:
#include<stdio.h>
#include<string.h>
#include<stdbool.h>
#define max 1000005
int top=0;
char str[max];
int judge(char s1,char s2)
{
if(s1=='[' && s2==']')
return 1;
else if(s1=='{' && s2=='}')
return 1;
else if(s1=='(' && s2==')')
return 1;
else if(s1=='<' && s2=='>')
return 1;
else if((s1=='<'||s1=='['||s1=='{'||s1=='(')&&(s2=='>'||s2==']'||s2=='}'||s2==')'))
return 2;
else
return 0;
}
int main()
{
char ch;
int num=0;
scanf("%c",&ch);
str[top++]=ch;
while(scanf("%c",&ch)!=EOF && ch!='
')
{
str[top++]=ch;
if(judge(str[top-2],str[top-1])==1)
{
top-=2;
}
else if(judge(str[top-2],str[top-1])==2)
{
top-=2;
num++;
}
}
if(top)
printf("Impossible
");
else
printf("%d
",num);
return 0;
}