• POJ


    Circle Through Three Points
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 4112   Accepted: 1712

    Description

    Your team is to write a program that, given the Cartesian coordinates of three points on a plane, will find the equation of the circle through them all. The three points will not be on a straight line.
    The solution is to be printed as an equation of the form
    	(x - h)^2 + (y - k)^2 = r^2				(1)

    and an equation of the form
    	x^2 + y^2 + cx + dy - e = 0				(2)

    Input

    Each line of input to your program will contain the x and y coordinates of three points, in the order Ax, Ay, Bx, By, Cx, Cy. These coordinates will be real numbers separated from each other by one or more spaces.

    Output

    Your program must print the required equations on two lines using the format given in the sample below. Your computed values for h, k, r, c, d, and e in Equations 1 and 2 above are to be printed with three digits after the decimal point. Plus and minus signs in the equations should be changed as needed to avoid multiple signs before a number. Plus, minus, and equal signs must be separated from the adjacent characters by a single space on each side. No other spaces are to appear in the equations. Print a single blank line after each equation pair.

    Sample Input

    7.0 -5.0 -1.0 1.0 0.0 -6.0
    1.0 7.0 8.0 6.0 7.0 -2.0
    

    Sample Output

    (x - 3.000)^2 + (y + 2.000)^2 = 5.000^2
    x^2 + y^2 - 6.000x + 4.000y - 12.000 = 0
    
    (x - 3.921)^2 + (y - 2.447)^2 = 5.409^2
    x^2 + y^2 - 7.842x - 4.895y - 7.895 = 0
    直接推公式计算,推导时细心些,不然debug很累。。
    #include<stdio.h>
    #include<math.h>
    int main()
    {
    	double x1,x2,x3,y1,y2,y3;
    	while (~scanf("%lf %lf %lf %lf %lf %lf", &x1, &y1, &x2, &y2, &x3, &y3))
    	{
    		double R;
    		double x, y;
    		double A1 = (x1+x2)/2, B1 = (y1+y2)/2, C1 = (x2-x1)/(y1-y2),
    			A2 = (x2+x3)/2, B2 = (y2+y3)/2, C2 = (x3-x2)/(y2-y3);
    		x = (B2-B1+A1*C1-A2*C2)/(C1-C2);
    		y = C1*(x-A1)+B1;
    		R = sqrt((x1 - x)*(x1 - x) + (y1 - y)*(y1 - y));
    
    		if (x>0)printf("(x - %.3lf)^2 + ", x); else printf("(x + %.3lf)^2 + ", x*(-1));
    		if (y>0)printf("(y - %.3lf)^2 = %.3f^2
    ", y, R); else printf("(y + %.3lf)^2 = %.3f^2
    ", y*(-1), R);
    		printf("x^2 + y^2 ");
    		if (x>0)printf("- %.3lfx ",x * 2); else  printf("+ %.3lfx ", x*(-2));
    		if (y>0)printf("- %.3lfy ",y * 2); else printf("+ %.3lfy ", y*(-2));
    		double M = x*x + y*y - R*R;
    		if (M>0)printf("+ %.3lf = 0
    
    ", M); else  printf("- %.3lf = 0
    
    ", M*(-1));
    
    		//puts("");
    	}
    	return 0;
    }

    
                
    
  • 相关阅读:
    Oracle SQL*PLUS与用户操作相关的常用命令
    Python 连接 Oracle 示例
    本机不安装Oracle客户端,使用PL/SQL Developer连接远程数据库
    MySQL数据导入oracle
    [转]中国著名黑客你知道多少?
    web项目经理手册跨部门合作项目
    如何建立有效的WBS结构?
    在外企混一定要懂的潜台词
    C#TreeView上下級Checked屬性關聯處理
    [新聞]全民獵頭 IT業的人才爭奪戰
  • 原文地址:https://www.cnblogs.com/csu-lmw/p/9124479.html
Copyright © 2020-2023  润新知