• Mahout的安装配置与使用


         Mahout 是Apache旗下的一个机器学习和数据挖掘的分布式框架,包括聚类,分类,协同过滤,关联规则挖掘等

    经典的算法。

         1. 安装Maven

         wget http://apache.etoak.com//maven/maven-3/3.0.4/binaries/apache-maven-3.0.4-bin.tar.gz 下载

    最新版本的Maven. tar xvf apache-maven-3.0.2-bin.tar.gz 解压后配置路径,vi ~/.bashrc 在此文件添加如下两行

    export M3_HOME=maven的实际安装路径
    export PATH=${M3_HOME}/bin:${PATH}

     然后执行. ~/.bashrc使之生效,通过mvn -version 查看版本来看是否安装成功。

        2. 安装Mahout

         svn co http://svn.apache.org/repos/asf/mahout/trunk mahout 将mahout从代码库中下载下来,在mahout

    目录执行mvn install 安装,如果想快一点就跳过单元测试检验的那些个环节,使用mvn clean install -DskipTests=true。

    如果过程中没有报错的话说明安装成功。

        3.  运行Mahout中的示例程序

         在/mahout/examples/bin下有个聚类的测试脚本,我们可以运行来看一下,不过事先要配置好Hadoop的运行环境,

    在《Hadoop Ubuntu下的安装》《Hadoop集群安装注意事项》有介绍如何配置Hadoop可以参考,我们运行下面这个

    脚本,cluster-syntheticcontrol.sh

    xxx@xxx: ./cluster-syntheticcontrol.sh 
    Please select a number to choose the corresponding clustering algorithm
    1. canopy clustering
    2. kmeans clustering
    3. fuzzykmeans clustering
    4. dirichlet clustering
    5. meanshift clustering
    Enter your choice : 
    

     这里有好几个聚类的算法,都是使用http://archive.ics.uci.edu/ml/databases/synthetic_control/synthetic_control.data

    这里的数据。实际跑一下,在hdfs里面output/clusters-*目录下可以查看结果。

        我们在运行一个协调过滤的例子,采用的是SlopeOne推荐的,从http://www.grouplens.org/node/12 下载需要的测试数据,

    wget http://www.grouplens.org/system/files/ml-100k.zip unzip命令解压后,找到ua.base文件,将它放到HDFS文件系统

    中去,hadoop fs -put ./ua.base input 。之后再/mahout/core/target目录下,执行下面的一串命令:

    hadoop jar mahout-core-0.8-SNAPSHOT-job org.apache.mahout.cf.taste.hadoop.pseudo.RecommenderJob -Dmapred.input.dir=input/ua.base -Dmapred.output.dir=output/recommend/ --recommenderClassName org.apache.mahout.cf.taste.impl.recommender.slopeone.SlopeOneRecommender

    运行之后我们将结果从hdfs导出到本地,hadoop fs -get output/recommend/  output, 先将part-r-00000.gz解压一下,然后tail -f part-r-00000就可以看到生成的

    推荐结果了:

    934	[1500:5.612117,1643:5.000663,1463:5.0,1293:5.0,1642:4.8183527,1368:4.740515,1398:4.733873,1639:4.5879145,114:4.5742764,1158:4.508668]
    935	[851:5.9419937,1449:5.3944926,1398:5.373123,1158:5.355277,1612:5.3333335,1064:5.3093076,1191:5.2806797,1080:5.2754364,1332:5.226541,1642:5.147603]
    936	[1500:5.6213202,1449:5.337122,851:5.314575,1463:5.2984333,1612:5.2581205,1642:5.093908,1398:5.015227,1293:5.0,1064:4.9175024,1158:4.8493795]
    937	[1500:5.1213202,1293:5.0,1449:4.864124,1467:4.5690355,1612:4.5,1642:4.4209914,1175:4.369398,851:4.277082,1398:4.2526293,169:4.2230315]
    938	[1500:6.0,851:5.4116225,1449:5.261485,1080:5.135357,1639:5.120229,1398:5.0513654,1612:5.0416207,1064:4.988654,1158:4.974,1629:4.9657393]
    939	[1294:6.5,1175:6.5,1467:6.226541,851:6.0186186,1080:6.0,1233:5.995873,1629:5.8823447,1449:5.8435216,169:5.7910223,114:5.780447]
    940	[1500:5.5841513,1463:5.119504,1293:5.0,1449:4.636525,1643:4.544313,1368:4.500481,1191:4.486469,1398:4.401837,1612:4.361653,1642:4.3293104]
    941	[1500:7.5,868:6.0,1398:6.0,1639:6.0,1158:5.512253,1467:5.4142137,1396:5.2928934,1642:5.2928934,1080:5.2132034,851:5.1633635]
    942	[1463:5.5285954,1500:5.5118446,1293:5.5,1449:5.4203076,1398:5.29603,1642:5.252299,1467:5.209111,1158:5.1849523,1524:5.1738963,1368:5.1218886]
    943	[1080:5.3644133,1233:5.303138,1449:5.2133603,1500:5.178636,1467:5.017004,1293:5.0,1612:5.0,1398:4.874856,1643:4.863265,1607:4.8206778]
    

       怎么样,功能强大吧,所有的算法mahout都帮你实现好了,你需要的只是提供数据而已,ua.base中的数据是这样的:

    943	1044	3	888639903
    943	1047	2	875502146
    943	1074	4	888640250
    943	1188	3	888640250
    943	1228	3	888640275
    943	1330	3	888692465
    

     用户ID    ItemID    preference分值    Timestamp时间戳

      

        

  • 相关阅读:
    git添加文件的原理流程
    maven复制包error
    一行代码-Js简单消息弹框
    WEB-给自己所有的域名加上HTTPS
    记录-配置文件-将网站协议从 HTTP 升级为 HTTPS (基于 Nginx 配置)
    记录-Mac终端自动补全的配置(解决不能输入大写T的问题)
    记录-Navicat连接MySQL8.0出现2059错误
    记录-MySQL 修改ROOT密码
    记录-Maven的安装与配置
    简单使用TensorFlow.js在浏览器进行视频实时目标识别(基于YOLO V3)
  • 原文地址:https://www.cnblogs.com/cstar/p/2820350.html
Copyright © 2020-2023  润新知