• 数据库原理


    一、事务

    概念

    事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。

    ACID

    1. 原子性(Atomicity)

    事务被视为不可分割的最小单元,事务的所有操作要么全部提交成功,要么全部失败回滚。

    回滚可以用日志来实现,日志记录着事务所执行的修改操作,在回滚时反向执行这些修改操作即可。

    2. 一致性(Consistency)

    数据库在事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。

    3. 隔离性(Isolation)

    一个事务所做的修改在最终提交以前,对其它事务是不可见的。

    4. 持久性(Durability)

    一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失。

    可以通过数据库备份和恢复来实现,在系统发生崩溃时,使用备份的数据库进行数据恢复。


    事务的 ACID 特性概念简单,但不是很好理解,主要是因为这几个特性不是一种平级关系:

    • 只有满足一致性,事务的执行结果才是正确的。
    • 在无并发的情况下,事务串行执行,隔离性一定能够满足。此时只要能满足原子性,就一定能满足一致性。
    • 在并发的情况下,多个事务并行执行,事务不仅要满足原子性,还需要满足隔离性,才能满足一致性。
    • 事务满足持久化是为了能应对数据库崩溃的情况。

    AUTOCOMMIT

    MySQL 默认采用自动提交模式。也就是说,如果不显式使用START TRANSACTION语句来开始一个事务,那么每个查询都会被当做一个事务自动提交。

    二、并发一致性问题

    在并发环境下,事务的隔离性很难保证,因此会出现很多并发一致性问题。

    丢失修改

    T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。

    读脏数据

    T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据。

    不可重复读

    T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同。

    幻影读

    T1 读取某个范围的数据,T2 在这个范围内插入新的数据,T1 再次读取这个范围的数据,此时读取的结果和和第一次读取的结果不同。


    产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。

    三、封锁

    封锁粒度

    MySQL 中提供了两种封锁粒度:行级锁以及表级锁。

    应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高。

    但是加锁需要消耗资源,锁的各种操作(包括获取锁、释放锁、以及检查锁状态)都会增加系统开销。因此封锁粒度越小,系统开销就越大。

    在选择封锁粒度时,需要在锁开销和并发程度之间做一个权衡。

    封锁类型

    1. 读写锁

    • 排它锁(Exclusive),简写为 X 锁,又称写锁。
    • 共享锁(Shared),简写为 S 锁,又称读锁。

    有以下两个规定:

    • 一个事务对数据对象 A 加了 X 锁,就可以对 A 进行读取和更新。加锁期间其它事务不能对 A 加任何锁。
    • 一个事务对数据对象 A 加了 S 锁,可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对 A 加 S 锁,但是不能加 X 锁。

    锁的兼容关系如下:

    - X S
    X × ×
    S ×

    2. 意向锁

    使用意向锁(Intention Locks)可以更容易地支持多粒度封锁。

    在存在行级锁和表级锁的情况下,事务 T 想要对表 A 加 X 锁,就需要先检测是否有其它事务对表 A 或者表 A 中的任意一行加了锁,那么就需要对表 A 的每一行都检测一次,这是非常耗时的。

    意向锁在原来的 X/S 锁之上引入了 IX/IS,IX/IS 都是表锁,用来表示一个事务想要在表中的某个数据行上加 X 锁或 S 锁。有以下两个规定:

    • 一个事务在获得某个数据行对象的 S 锁之前,必须先获得表的 IS 锁或者更强的锁;
    • 一个事务在获得某个数据行对象的 X 锁之前,必须先获得表的 IX 锁。

    通过引入意向锁,事务 T 想要对表 A 加 X 锁,只需要先检测是否有其它事务对表 A 加了 X/IX/S/IS 锁,如果加了就表示有其它事务正在使用这个表或者表中某一行的锁,因此事务 T 加 X 锁失败。

    各种锁的兼容关系如下:

    - X IX S IS
    X × × × ×
    IX × ×
    S × ×
    IS ×

    解释如下:

    • 任意 IS/IX 锁之间都是兼容的,因为它们只是表示想要对表加锁,而不是真正加锁;
    • S 锁只与 S 锁和 IS 锁兼容,也就是说事务 T 想要对数据行加 S 锁,其它事务可以已经获得对表或者表中的行的 S 锁。

    封锁协议

    1. 三级封锁协议

    一级封锁协议

    事务 T 要修改数据 A 时必须加 X 锁,直到 T 结束才释放锁。

    可以解决丢失修改问题,因为不能同时有两个事务对同一个数据进行修改,那么事务的修改就不会被覆盖。

    T1 T2
    lock-x(A)
    read A=20
    lock-x(A)
    wait
    write A=19 .
    commit .
    unlock-x(A) .
    obtain
    read A=19
    write A=21
    commit
    unlock-x(A)

    二级封锁协议

    在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁。

    可以解决读脏数据问题,因为如果一个事务在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么就不能再加 S 锁了,也就是不会读入数据。

    T1 T2
    lock-x(A)
    read A=20
    write A=19
    lock-s(A)
    wait
    rollback .
    A=20 .
    unlock-x(A) .
    obtain
    read A=20
    commit
    unlock-s(A)

    三级封锁协议

    在二级的基础上,要求读取数据 A 时必须加 S 锁,直到事务结束了才能释放 S 锁。

    可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在读的期间数据发生改变。

    T1 T2
    lock-s(A)
    read A=20
    lock-x(A)
    wait
    read A=20 .
    commit .
    unlock-s(A) .
    obtain
    read A=20
    write A=19
    commit
    unlock-X(A)

    2. 两段锁协议

    加锁和解锁分为两个阶段进行。

    可串行化调度是指,通过并发控制,使得并发执行的事务结果与某个串行执行的事务结果相同。

    事务遵循两段锁协议是保证可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。

    lock-x(A)...lock-s(B)...lock-s(C)...unlock(A)...unlock(C)...unlock(B)
    

    但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度。

    lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(C)...unlock(C)
    

    MySQL 隐式与显示锁定

    MySQL 的 InnoDB 存储引擎采用两段锁协议,会根据隔离级别在需要的时候自动加锁,并且所有的锁都是在同一时刻被释放,这被称为隐式锁定。

    InnoDB 也可以使用特定的语句进行显示锁定:

    SELECT ... LOCK In SHARE MODE;
    SELECT ... FOR UPDATE;
    

    四、隔离级别

    未提交读(READ UNCOMMITTED)

    事务中的修改,即使没有提交,对其它事务也是可见的。

    提交读(READ COMMITTED)

    一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改在提交之前对其它事务是不可见的。

    可重复读(REPEATABLE READ)

    保证在同一个事务中多次读取同样数据的结果是一样的。

    可串行化(SERIALIZABLE)

    强制事务串行执行。


    隔离级别 脏读 不可重复读 幻影读
    未提交读
    提交读 ×
    可重复读 × ×
    可串行化 × × ×
  • 相关阅读:
    格式化HDFS 出现 java.io.IOException: Cannot create directory /opt/hdfs/name/current 错误
    Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
    解决:superset db upgrade时报错: ModuleNotFoundError: No module named 'dataclasses'
    Centos7 Conda HTTPError: HTTP 000 CONNECTION FAILED for url <https://mirrors.tuna.tsinghua.edu.cn/anaco
    hive 窗口函数(三)
    hive 窗口函数(二)
    hive 窗口函数(一)
    hive 常用函数
    Centos7开机之后连不上网 ens33:<BROADCAST,ULTICAST>mtu 1588 qdisc noop state DOWl group default qlen 1888
    Hive 学习笔记(一)Hive 简介
  • 原文地址:https://www.cnblogs.com/csslcww/p/9708173.html
Copyright © 2020-2023  润新知