• Kettle实现MapReduce之WordCount


    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 欢迎转载

    抽空用kettle配置了一个Mapreduce的Word count,发现还是很方便快捷的,废话不多说,进入正题.

    一.创建Mapper转换

    如下图,mapper读取hdfs输入,进行word的切分,输出每个word和整数常量值

     

     1>MapReduce Input:Mapper输入,读取HDFS上的输入文件内容以键值对存储;

     2>Spit filed to rows:读取value值以分隔符 "|"  进行切分(注意我这里hdfs文件中的word是以"|"隔开的)

     3>Add constants:给每次出现的word追加一个常量字段mapValue,值为整数1.

     4>MapReduce Output:Mapper输出,key为每个word,这里为mapKey,value为常量值mapValue.

     

    二.创建Reducer转换

    如下图,Reducer读取mapper的输出.按照每个key值进行分组,对相应的常量值字段进行聚合,这里是做sum,然后最终输出到hdfs文件中去.

     

    1>MapReduce input:读取Mapper中的输出作为Reducer的输入

    2>GroupByKey:按照key进行分组(这里key是每个word), 然后对value进行聚合sum,求出每个word出现的总次数;

    3>MapReduce Output:最终的键值对,每行以<单词,总次数>来输出到hdfs上去.

     

    三.创建MapReduce Job.

    创建最终的MapReduce Job,配置相应参数,调用MapperReducer,见下图

     

    1>START:表示job的开始

    2>SetMRVariables:组件是set variables,用于设置一些MapReduce执行所需要的参数的全局变量值,hdfs input path;

    3>MapReduceWordCount:组件是Pentaho MapReduce组件,用来配置需要调用的MapperReducer以及集群相关信息.

    以上配置好以后执行MapReduce Job,会提交至Hadoop集群并运行成功,如上图,可以同时看到MapReduce的执行进度。

    鉴于kettle能对字段做各种切分,组合以及正则等处理,还可以自定义java class,所以基本的MR程序都可以快速配置出来.

    以上配置的Job下载链接:http://files.cnblogs.com/files/cssdongl/MRJobTest.7z

    参考资料:http://wiki.pentaho.com/display/BAD/Understanding+How+Pentaho+works+with+Hadoop

  • 相关阅读:
    Maven仓库详解
    Maven镜像配置
    使用spring的jdbcTemplate-----用JDBC模板查询数据库
    struts2+spring的两种整合方式
    Spring 中设置依赖注入
    Struts_json插件配置参数
    String、StringBuffer与StringBuilder之间区别
    有关collection中的一些数据结构
    MyBatis的foreach语句详解
    struts文件上传拦截器中参数的配置(maximumSize,allowedTypes ,allowedExtensions)问题
  • 原文地址:https://www.cnblogs.com/cssdongl/p/6019439.html
Copyright © 2020-2023  润新知