给你四个点,问你第四个点是否在前三个点围成的三角形的外接圆上.
思路:
水题,就是练练用魔板罢了,当该三角形是锐角三角形的时候,圆心是任意两条边中垂线的交点,半径是圆心到任意一点的距离,否则圆心就是最长的那条边的中点位置,半径就是最长的那条边的一半..
#include <cstdio> #include <cmath> #include <algorithm> #define maxn 60 #define eps 1e-7 using namespace std; int dcmp(double x) //控制精度 { if(fabs(x)<eps) return 0; else return x<0?-1:1; } double toRad(double deg) //角度转弧度 { return deg/180.0*acos(-1.0); } struct Point { double x,y; Point(){} Point(double x,double y):x(x),y(y) {} void input() { scanf("%lf %lf",&x,&y); } }; typedef Point Vector; Vector operator+( Vector A, Vector B ) //向量加 { return Vector( A.x + B.x, A.y + B.y ); } Vector operator-(Vector A,Vector B) //向量减 { return Vector( A.x - B.x, A.y - B.y ); } Vector operator*( Vector A, double p ) //向量数乘 { return Vector( A.x * p, A.y * p ); } Vector operator/( Vector A, double p ) //向量数除 { return Vector( A.x / p, A.y / p ); } bool operator<(const Point& A, const Point& B ) //两点比较 { return dcmp( A.x - B.x ) < 0 || ( dcmp( A.x - B.x ) == 0 && dcmp( A.y - B.y ) < 0 ); } bool operator==( const Point& a, const Point& b ) //两点相等 { return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0; } struct Line { Point s,e; Vector v; Line() {} Line(Point s,Point v,int type)://法向量式 s(s),v(v){} Line(Point s,Point e):s(s),e(e)//两点式 {v=e-s;} }; double Dot(Vector A,Vector B)//向量点乘 { return A.x*B.x+A.y*B.y; } double Length(Vector A)//向量模 { return sqrt(Dot(A,A)); } double Angle(Vector A,Vector B)//向量夹角 { return acos(Dot(A,B)/Length(A)/Length(B)); } double Cross(Vector A,Vector B)//向量叉积 { return A.x*B.y-A.y*B.x; } double Area2(Point A,Point B,Point C )//向量有向面积 { return Cross(B-A,C-A); } double Dist(Point A,Point B) { return Length(A-B); } Vector Rotate(Vector A, double rad)//向量逆时针旋转 { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } Vector Normal(Vector A)//向量单位法向量 { double L=Length(A); return Vector(-A.y/L,A.x/L); } Point GetLineIntersection(Line l1,Line l2)//两直线交点 { Point P=l1.s; Vector v=l1.v; Point Q=l2.s; Vector w=l2.v; Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } double DistanceToLine(Point P,Line L)//点到直线的距离 { Point A,B; A=L.s,B=L.e; Vector v1=B-A,v2=P-A; return fabs(Cross(v1,v2))/Length(v1); } double DistanceToSegment(Point P, Line L)//点到线段的距离 { Point A,B; A=L.s,B=L.e; if(A==B) return Length(P-A); Vector v1=B-A,v2=P-A,v3=P-B; if (dcmp(Dot(v1,v2))<0) return Length(v2); else if (dcmp(Dot(v1,v3))>0) return Length(v3); else return fabs(Cross(v1,v2)) / Length(v1); } Point GetLineProjection(Point P,Line L)// 点在直线上的投影 { Point A,B; A=L.s,B=L.e; Vector v=B-A; return A+v*(Dot(v,P-A)/Dot(v,v)); } bool OnSegment(Point p,Line l)//点在线段上包括端点 { Point a1=l.s; Point a2=l.e; return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dist(p,a1)+Dist(p,a2)-Dist(a1,a2))==0; } bool Paralled(Line l1,Line l2)//直线平行 { return dcmp(Cross(l1.e-l1.s,l2.e-l2.s))==0; } bool SegmentProperIntersection(Line l1,Line l2)//线段相交 { if(Paralled(l1,l2)) { return false; } Point t=GetLineIntersection(l1,l2); if(OnSegment(t,l1)) { return true; } return false; } int ConvexHull(Point *p,int n,Point *ch) //求凸包 { sort(p,p+n); int m=0; for ( int i = 0; i < n; ++i ) { while ( m > 1 && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m; ch[m++] = p[i]; } int k = m; for ( int i = n - 2; i >= 0; --i ) { while ( m > k && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m; ch[m++] = p[i]; } if ( n > 1 ) --m; return m; } double PolygonArea(Point *p,int n) //多边形有向面积 { double area=0; for (int i=1;i<n-1;++i) area+=Cross(p[i]-p[0],p[i+1]-p[0]); return area/2.0; } double dis(Point A ,Point B) { double tmp = (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y); return sqrt(tmp); } typedef struct { double dis; Point A ,B; }EDGE; EDGE edge[5]; bool campp(EDGE a ,EDGE b) { return a.dis < b.dis; } int main () { int t ,i ,cas = 1; Point p1 ,p2 ,p3 ,p; Point O; double R; scanf("%d" ,&t); while(t--) { scanf("%lf %lf" ,&p1.x ,&p1.y); scanf("%lf %lf" ,&p2.x ,&p2.y); scanf("%lf %lf" ,&p3.x ,&p3.y); scanf("%lf %lf" ,&p.x ,&p.y); edge[1].A = p1 ,edge[1].B = p2; edge[2].A = p1 ,edge[2].B = p3; edge[3].A = p2 ,edge[3].B = p3; edge[1].dis = dis(p1 ,p2); edge[2].dis = dis(p1 ,p3); edge[3].dis = dis(p2 ,p3); sort(edge + 1 ,edge + 3 + 1 ,campp); if(edge[1].dis * edge[1].dis + edge[2].dis * edge[2].dis <= edge[3].dis * edge[3].dis) { O.x = (edge[3].A.x + edge[3].B.x) / 2; O.y = (edge[3].A.y + edge[3].B.y) / 2; R = edge[3].dis / 2; } else { Line L1 = Line((p1 + p2)/2 ,Normal(p1 - p2),1); Line L2 = Line((p1 + p3)/2 ,Normal(p1 - p3),1); O = GetLineIntersection(L1 ,L2); R = dis(O ,p1); } double diss = dis(p ,O); if(diss <= R) printf("Case #%d: Danger " ,cas ++); else printf("Case #%d: Safe " ,cas ++); } return 0; }