求斐波那契后四位,n <= 1,000,000,000.
思路:
简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键是能把问题转换成矩阵的题目,也就是转换成简单加减地推式,下面说下怎么样根据递推式构造矩阵把,这个不难,我的习惯是在中间插矩阵,就是比如斐波那契
a[n] = a[n-1] + a[n-2];
我的习惯是这样,首先要知道这个式子是有连续的两个项就可以推出第三个项
那么
a1 a2 0 1 a2 a3 这样就直接出来了中间矩阵,然后快速幂处理,这个是
1 1 最简单的了,一般都是要想办法各种转换,然后在构造式子
然后在快速幂,还有注意,矩阵可以把最下面那个循环拿到上面
然后通过if(mat[i][k])来优化,我下面的用了,这个要看0出现 的多不多(比较重要),还有可以通过调换循环位置(这个是底 层优化,不在算法范围之内)优化,推荐一个好题,杭电上有个 叫 什么什么233的那个,记得当时做那个题做的比较爽。
#include<stdio.h>
#include<string.h>
#define MOD 10000
typedef struct
{
int mat[3][3];
}M;
M matM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= 2 ;k ++)
for(int i = 1 ;i <= 2 ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= 2 ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
}
M qPowMat(M a ,int b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= 2 ;i ++)
c.mat[i][i] = 1;
while(b)
{
if(b&1) c = matM(c ,a);
a = matM(a ,a);
b >>= 1;
}
return c;
}
int main ()
{
int n ,i;
M star ,ans;
star.mat[1][1] = 0;
star.mat[1][2] = star.mat[2][1] = star.mat[2][2] = 1;
while(~scanf("%d" ,&n) && n != -1)
{
if(n == 0)
{
printf("0
");
continue;
}
if(n == 1)
{
printf("1
");
continue;
}
ans = qPowMat(star ,n);
printf("%d
" ,(0 * ans.mat[1][1] + 1 * ans.mat[2][1]) % MOD);
}
return 0;
}