有一条直线,直线上做多有50000个点,然后给你组关系 a b c表明a-b之间最少有c个点,问直线上最少多少个点。
思路:
a-b最少有c个点可以想象a到b+1的距离是大于等于c的,还有一个隐含条件就是
0<=S[i] - S[i-1]<=1,差分约束的题目记住找隐含条件很重要,这样也就是一共三个条件,建边求最上路,记住查分约束求短要用最长路,求最长要用最短路,最长路的建边是
a ,b c
S[i-1] ,S[i] 0
S[i] ,S[i-1] -1
#include<queue>
#include<stdio.h>
#include<string.h>
#define N_node 50000 + 100
#define N_edge 150000 + 10000
#define INF 1000000000
using namespace std;
typedef struct
{
int to ,cost ,next;
}STAR;
STAR E[N_edge];
int list[N_node] ,tot;
int s_x[N_node] ,mark[N_node] ,mkc[N_node];
void add(int a ,int b ,int c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot;
}
bool SPFA(int s ,int n)
{
for(int i = 0 ;i <= n ;i ++)
s_x[i] = -INF ,mark[i] = mkc[i] = 0;
queue<int>q;
q.push(s);
mark[s] = mkc[s] = 1;
s_x[s] = 0;
while(!q.empty())
{
int xin ,tou;
tou = q.front();
q.pop();
mark[tou] = 0;
for(int k = list[tou] ;k ;k = E[k].next)
{
xin = E[k].to;
if(s_x[xin] < s_x[tou] + E[k].cost)
{
s_x[xin] = s_x[tou] + E[k].cost;
if(!mark[xin])
{
mark[xin] = 1;
if(++mkc[xin] > n) return 0;
q.push(xin);
}
}
}
}
return 1;
}
int main ()
{
int t ,i ,a ,b ,c ,m ,min ,max;
while(~scanf("%d" ,&m))
{
memset(list ,0 ,sizeof(list));
tot = 1;
min = INF ,max = 0;
for(i = 1 ;i <= m ;i ++)
{
scanf("%d %d %d" ,&a ,&b ,&c);
add(a ,++b ,c);
if(min > a) min = a;
if(max < b) max = b;
}
for(i = min + 1 ;i <= max ;i ++)
{
add(i-1 ,i ,0);
add(i ,i-1 ,-1);
}
SPFA(min ,max);
printf("%d
" ,s_x[max]);
}
return 0;
}