• 【转】C/C++程序员应聘常见面试题深入剖析


    1.引言

      本文的写作目的并不在于提供C/C++程序员求职面试指导,而旨在从技术上分析面试题的内涵。文中的大多数面试题来自各大论坛,部分试题解答也参考了网友的意见­。

      许多面试题看似简单,却需要深厚的基本功才能给出完美的解答。

      企业要求面试者写一个最简单的strcpy函数都可看出面试者在技术上究竟达到了怎样的程度,我们能真正写好一个strcpy函数吗?我们都觉得自己能,可是我们写出的strcpy很可能只能拿到10分中的2分。

      读者可从本文看到strcpy函数从2分到10分解答的例子,看看自己属于什么样的层次。

      此外,还有一些面试题考查面试者敏捷的思维能力。

      分析这些面试题,本身包含很强的趣味性;而作为一名研发人员,通过对这些面试题的深入剖析则可进一步增强自身的内功。

    2.找错题

     试题1: 

    void test1() 
    { 
        char string[10]; 
        char* str1 = "0123456789"; 
        strcpy( string, str1 ); 
    } 

    试题2:

    void test2() 
    { 
        char string[10], str1[10]; 
    
        int i; 
        for(i=0; i<10; i++) 
        { 
            str1[i] = 'a'; 
       } 
    
        strcpy( string, str1 ); 
    
    } 

    试题3:

    void test3(char* str1) 
    { 
       char string[10]; 
       if( strlen( str1 ) <= 10 ) 
       { 
           strcpy( string, str1 ); 
       } 
    } 

    解答:

      试题1,字符串str1需要11个字节才能存放下(包括末尾的'/0'),而string只有10个字节的空间,strcpy会导致数组越界;

      试题2,如果面试者指出字符数组str1不能在数组内结束可以给3分;如果面试者指出strcpy(string, str1)调用使得从str1内存起复制到string内存起所复制的字节数具有不确定性可以给7分,在此基础上指出库函数strcpy工作方式的给10分;

      试题3,if(strlen(str1) <= 10)应改为if(strlen(str1) < 10),因为strlen的结果未统计'/0'所占用的1个字节。

    剖析:

      考查对基本功的掌握:

      (1)字符串以'/0'结尾;

      (2)对数组越界把握的敏感度;

      (3)库函数strcpy的工作方式,如果编写一个标准strcpy函数的总分值为10,下面给出几个不同得分的答案:

    2分

    void strcpy( char *strDest, char *strSrc ) 
    { 
          while( (*strDest++ = * strSrc++) != '/0' ); 
    } 

    4分

    void strcpy( char *strDest, const char *strSrc ) 
    //将源字符串加const,表明其为输入参数,加2分 
    { 
            while( (*strDest++ = * strSrc++) != '/0' ); 
    }

    7分

    void strcpy(char *strDest, const char *strSrc) 
    { 
          //对源地址和目的地址加非0断言,加3分 
         assert( (strDest != NULL) && (strSrc != NULL) ); 
    while( (*strDest++ = * strSrc++) != '/0' ); }

    10分

    //为了实现链式操作,将目的地址返回,加3分! 
    char * strcpy( char *strDest, const char *strSrc ) 
    { 
         assert( (strDest != NULL) && (strSrc != NULL) ); 
    char *address = strDest;
    while( (*strDest++ = * strSrc++) != '/0' ); return address; }

      从2分到10分的几个答案我们可以清楚的看到,小小的strcpy竟然暗藏着这么多玄机,真不是盖的!需要多么扎实的基本功才能写一个完美的strcpy啊!

    (4)对strlen的掌握,它没有包括字符串末尾的'/0'。

      读者看了不同分值的strcpy版本,应该也可以写出一个10分的strlen函数了,完美的版本为:

    int strlen( const char *str ) //输入参数const 
    { 
        assert( strt != NULL ); //断言字符串地址非0 
    int len;
    while( (*str++) != '/0' ) { len++; }
    return len; }

    试题4:

    void GetMemory( char *p ) 
    { 
         p = (char *) malloc( 100 ); 
    } 
    
    void Test( void ) 
    { 
         char *str = NULL; 
    GetMemory( str ); strcpy( str,
    "hello world" ); printf( str ); }

    试题5:

    char *GetMemory( void ) 
    { 
         char p[] = "hello world"; 
    return p; } void Test( void ) { char *str = NULL;
    str
    = GetMemory(); printf( str ); }

    试题6:

    void GetMemory( char **p, int num ) 
    { 
         *p = (char *) malloc( num ); 
    } 
    
    void Test( void ) 
    { 
         char *str = NULL; 
    GetMemory(
    &str, 100 ); strcpy( str, "hello" ); printf( str ); }

    试题7:

    void Test( void ) 
    { 
         char *str = (char *) malloc( 100 ); 
    strcpy( str,
    "hello" ); free( str ); ... //省略的其它语句 }

    解答:

      试题4传入中GetMemory( char *p)函数的形参为字符串指针,在函数内部修改形参并不能真正的改变传入形参的值,执行完

    char *str = NULL; 
    GetMemory( str );

      后的str仍然为NULL;

      试题5中

    char p[] = "hello world"; 
    return p;

      的p[]数组为函数内的局部自动变量,在函数返回后,内存已经被释放。这是许多程序员常犯的错误,其根源在于不理解变量的生存期。

      试题6的GetMemory避免了试题4的问题,传入GetMemory的参数为字符串指针的指针,但是在GetMemory中执行申请内存及赋值语句 

    *p = (char *) malloc( num );

      后未判断内存是否申请成功,应加上:

    if ( *p == NULL ) 
    { 
          ...//进行申请内存失败处理 
    } 

      试题7存在与试题6同样的问题,在执行

    char *str = (char *) malloc(100);

      后未进行内存是否申请成功的判断;另外,在free(str)后未置str为空,导致可能变成一个"野"指针,应加上:

    str = NULL;

      试题6的Test函数中也未对malloc的内存进行释放。

    剖析:

      试题4~7考查面试者对内存操作的理解程度,基本功扎实的面试者一般都能正确的回答其中50~60的错误。但是要完全解答正确,却也绝非易事。

      对内存操作的考查主要集中在:

      (1)指针的理解;

      (2)变量的生存期及作用范围;

      (3)良好的动态内存申请和释放习惯。

    再看看下面的一段程序有什么错误:

    swap( int* p1,int* p2 ) 
    { 
        int *p; 
    
        *p = *p1; 
        *p1 = *p2; 
        *p2 = *p;
    }

    在swap函数中,p是一个"野"指针,有可能指向系统区,导致程序运行的崩溃。在VC++中DEBUG运行时提示错误"Access Violation"。该程序应该改为:

    swap( int* p1,int* p2 ) 
    { 
        int p; 
    
        p = *p1; 
        *p1 = *p2; 
        *p2 = p;
    }

    3.内功题

    试题1:分别给出BOOL,int,float,指针变量与"零值"比较的 if 语句(假设变量名为var)

    解答:

      BOOL型变量:if(!var)

      int型变量: if(var==0)

      float型变量:const float EPSINON = 0.00001; if ((x >= - EPSINON) && (x <= EPSINON)

      指针变量:  if(var==NULL)

    剖析:

      考查对0值判断的"内功",BOOL型变量的0判断完全可以写成if(var==0),而int型变量也可以写成if(!var),指针变量的判断也可以写成i­f(!var),上述写法虽然程序都能正确运行,但是未能清晰地表达程序的意思。

      一般的,如果想让if判断一个变量的"真"、"假",应直接使用if(var)、if(!var),表明其为"逻辑"判断;如果用if判断一个数值型变量(short、int、long等),应该用if(var==0),表明是与0进行"数值"上的比较;而判断指针则适宜用if(var==NULL),这是一种很好的编程习惯。

      浮点型变量并不精确,所以不可将float变量用"=="或"!="与数字比较,应该设法转化成">="或"<="形式。如果写成if(x == 0.0),则判为错,得0分。

    试题2:以下为Windows NT下的32位C++程序,请计算sizeof的值

    void Func ( char str[100] ) 
    { 
        sizeof( str ) = ?
    }
    
    void *p = malloc( 100 ); 
    sizeof ( p ) = ?

    解答:

      sizeof( str ) = 4
      sizeof ( p ) = 4

    剖析:

      Func ( char str[100])函数中数组名作为函数形参时,在函数体内,数组名失去了本身的内涵,仅仅只是一个指针;在失去其内涵的同时,它还失去了其常量特性,可以作自增、自减等操作,­可以被修改。

    数组名的本质如下:

      (1)数组名指代一种数据结构,这种数据结构就是数组;

      例如:

    char str[10]; 
    cout << sizeof(str) << endl;

      输出结果为10,str指代数据结构char[10]。

      (2)数组名可以转换为指向其指代实体的指针,而且是一个指针常量,不能作自增、自减等操作,不能被修改;

    char str[10]; 
    str++; //编译出错,提示str不是左值

      (3)数组名作为函数形参时,沦为普通指针。

    Windows NT 32位平台下,指针的长度(占用内存的大小)为4字节,故sizeof( str ) 、sizeof ( p ) 都为4。

    试题3:写一个"标准"宏MIN,这个宏输入两个参数并返回较小的一个。另外,当你写下面的代码时会发生什么事?

    least = MIN(*p++, b);

    解答:

    #define MIN(A,B) ((A) <= (B) ? (A) : (B))

      MIN(*p++, b)会产生宏的副作用

    剖析:

      这个面试题主要考查面试者对宏定义的使用,宏定义可以实现类似于函数的功能,但是它终归不是函数,而宏定义中括弧中的"参数"也不是真的参数,在宏展开的时候对­"参数"进行的是一对一的替换。

      程序员对宏定义的使用要非常小心,特别要注意两个问题:

      (1)谨慎地将宏定义中的"参数"和整个宏用用括弧括起来。所以,严格地讲,下述解答:

    #define MIN(A,B) (A) <= (B) ? (A) : (B) 
    #define MIN(A,B) (A <= B ? A : B )

      都应判0分;

      (2)防止宏的副作用

      宏定义#define MIN(A,B) ((A) <= (B) ? (A) : (B))对MIN(*p++, b)的作用结果是:((*p++) <= (b) ? (*p++) : (*p++))

      这个表达式会产生副作用,指针p会作三次++自增操作。

      除此之外,另一个应该判0分的解答是:#define MIN(A,B) ((A) <= (B) ? (A) : (B));

      这个解答在宏定义的后面加";",显示编写者对宏的概念模糊不清,只能被无情地判0分并被面试官淘汰。

    试题4:为什么标准头文件都有类似以下的结构?

    #ifndef __INCvxWorksh 
    #define __INCvxWorksh 
    #ifdef __cplusplus
    
    extern "C" { 
    #endif 
    /*...*/ 
    #ifdef __cplusplus
    }
    
    #endif 
    #endif /* __INCvxWorksh */

    解答:

      头文件中的编译宏的作用是防止被重复引用。

    #ifndef __INCvxWorksh 
    #define __INCvxWorksh 
    #endif

      作为一种面向对象的语言,C++支持函数重载,而过程式语言C则不支持。函数被C++编译后在symbol库中的名字与C语言的不同。例如,假设某个函数的原型­为:

    void foo(int x, int y);

      该函数被C编译器编译后在symbol库中的名字为_foo,而C++编译器则会产生像_foo_int_int之类的名字。_foo_int_int这样的名­字包含了函数名和函数参数数量及类型信息,C++就是考这种机制来实现函数重载的。

      为了实现C和C++的混合编程,C++提供了C连接交换指定符号extern "C"来解决名字匹配问题,函数声明前加上extern "C"后,则编译器就会按照C语言的方式将该函数编译为_foo,这样C语言中就可以调用C++的函数了。 

    试题5:编写一个函数,作用是把一个char组成的字符串循环右移n个。比如原来是"abcdefghi"如果n=2,移位后应该是"hiabcdefgh"

    函数头是这样的:

    //pStr是指向以'/0'结尾的字符串的指针 
    //steps是要求移动的n
    
    void LoopMove ( char * pStr, int steps ) 
    { 
    //请填充...
    }

    解答:

      正确解答1:

    void LoopMove ( char *pStr, int steps ) 
    { 
        int n = strlen( pStr ) - steps; 
        char tmp[MAX_LEN]; 
    
        strcpy ( tmp, pStr + n ); 
        strcpy ( tmp + steps, pStr); 
        *( tmp + strlen ( pStr ) ) = '/0'; 
        strcpy( pStr, tmp );
    }

      正确解答2:

    void LoopMove ( char *pStr, int steps ) 
    { 
        int n = strlen( pStr ) - steps; 
        char tmp[MAX_LEN]; 
    
        memcpy( tmp, pStr + n, steps ); 
        memcpy(pStr + steps, pStr, n ); 
        memcpy(pStr, tmp, steps );
    }

    剖析:

      这个试题主要考查面试者对标准库函数的熟练程度,在需要的时候引用库函数可以很大程度上简化程序编写的工作量。

      最频繁被使用的库函数包括:

      (1) strcpy

      (2) memcpy

      (3) memset

    试题6:已知WAV文件格式如下表,打开一个WAV文件,以适当的数据结构组织WAV文件头并解析WAV格式的各项信息。

    WAVE文件格式说明表

    偏移地址 字节数 数据类型 内 容
    文件头
    00H 4 Char "RIFF"标志
    04H 4 int32 文件长度
    08H 4 Char "WAVE"标志
    0CH 4 Char "fmt"标志
    10H 4   过渡字节(不定)
    14H 2 int16 格式类别
    16H 2 int16 通道数
    18H 2 int16
    采样率(每秒样本数),表示每个通道的播放速度
    1CH 4 int32 波形音频数据传送速率
    20H 2 int16 数据块的调整数(按字节算的)
    22H 2   每样本的数据位数
    24H 4 Char 数据标记符"data"
    28H 4 int32 语音数据的长度

    解答:

      将WAV文件格式定义为结构体WAVEFORMAT:

    typedef struct tagWaveFormat 
    { 
        char cRiffFlag[4]; 
        UIN32 nFileLen; 
        char cWaveFlag[4]; 
        char cFmtFlag[4]; 
        char cTransition[4]; 
        UIN16 nFormatTag ; 
        UIN16 nChannels; 
        UIN16 nSamplesPerSec; 
        UIN32 nAvgBytesperSec; 
        UIN16 nBlockAlign; 
        UIN16 nBitNumPerSample; 
        char cDataFlag[4]; 
        UIN16 nAudioLength;
    
    } WAVEFORMAT;

      假设WAV文件内容读出后存放在指针buffer开始的内存单元内,则分析文件格式的代码很简单,为:

    WAVEFORMAT waveFormat; 
    memcpy(
    &waveFormat, buffer,sizeof( WAVEFORMAT ) );

      直接通过访问waveFormat的成员,就可以获得特定WAV文件的各项格式信息。

    剖析:

      试题6考查面试者组织数据结构的能力,有经验的程序设计者将属于一个整体的数据成员组织为一个结构体,利用指针类型转换,可以将memcpy、memset等函­数直接用于结构体地址,进行结构体的整体操作。透过这个题可以看出面试者的程序设计经验是否丰富。

    试题7:编写类String的构造函数、析构函数和赋值函数,已知类String的原型为:

    class String 
    { 
    public: 
        String(const char *str = NULL); // 普通构造函数 
        String(const String &other); // 拷贝构造函数 
        ~ String(void); // 析构函数 
        String & operate =(const String &other); // 赋值函数 
    private: 
        char *m_data; // 用于保存字符串
    
    };

    解答:

    //普通构造函数
    String::String(const char *str) 
    { 
        if(str==NULL) 
        { 
            m_data = new char[1]; //得分点:对空字符串自动申请存放结束标志'/0'的空 
         //加分点:对m_data加NULL 判断 
            *m_data = '/0'; 
        } 
        else 
        { 
            int length = strlen(str); 
            m_data = new char[length+1]; // 若能加 NULL 判断则更好 
            strcpy(m_data, str); 
        }
    }
    
    // String的析构函数
    String::~String(void) 
    { 
        delete [] m_data; // 或delete m_data;
    }
    
    //拷贝构造函数
    String::String(const String &other)    //得分点:输入参数为const型 
    { 
        int length = strlen(other.m_data); 
        m_data = new char[length+1]; 
    
        //加分点:对m_data加NULL 判断 
        strcpy(m_data, other.m_data);
    }
    
    //赋值函数
    String & String::operate =(const String &other) //得分点:输入参数为const型 
    { 
        if(this == &other)   //得分点:检查自赋值 
            return *this; 
    
        delete [] m_data; 
        //得分点:释放原有的内存资源 
        int length = strlen( other.m_data ); 
        m_data = new char[length+1];  //加分点:对m_data加NULL判断 
        strcpy( m_data, other.m_data ); 
    
        return *this; 
            //得分点:返回本对象的引用
    }  

    剖析:

      能够准确无误地编写出String类的构造函数、拷贝构造函数、赋值函数和析构函数的面试者至少已经具备了C++基本功的60%以上!

      在这个类中包括了指针类成员变量m_data,当类中包括指针类成员变量时,一定要重载其拷贝构造函数、赋值函数和析构函数,这既是对C++程序员的基本要求,­也是《Effective C++》中特别强调的条款。

      仔细学习这个类,特别注意加注释的得分点和加分点的意义,这样就具备了60%以上的C++基本功!

    试题8:请说出static和const关键字尽可能多的作用

    解答:

    static关键字至少有下列n个作用:

      (1)函数体内static变量的作用范围为该函数体,不同于auto变量,该变量的内存只被分配一次,因此其值在下次调用时仍维持上次的值;

      (2)在模块内的static全局变量可以被模块内所用函数访问,但不能被模块外其它函数访问;

      (3)在模块内的static函数只可被这一模块内的其它函数调用,这个函数的使用范围被限制在声明它的模块内;

      (4)在类中的static成员变量属于整个类所拥有,对类的所有对象只有一份拷贝;

      (5)在类中的static成员函数属于整个类所拥有,这个函数不接收this指针,因而只能访问类的static成员变量。

    const关键字至少有下列n个作用:

      (1)欲阻止一个变量被改变,可以使用const关键字。在定义该const变量时,通常需要对它进行初始化,因为以后就没有机会再去改变它了;

      (2)对指针来说,可以指定指针本身为const,也可以指定指针所指的数据为const,或二者同时指定为const;

      (3)在一个函数声明中,const可以修饰形参,表明它是一个输入参数,在函数内部不能改变其值;

      (4)对于类的成员函数,若指定其为const类型,则表明其是一个常函数,不能修改类的成员变量;

      (5)对于类的成员函数,有时候必须指定其返回值为const类型,以使得其返回值不为"左值"。例如:

    const classA operator*(const classA& a1,const classA& a2);

    operator*的返回结果必须是一个const对象。如果不是,这样的变态代码也不会编译出错:

    classA a, b, c; 
    (a * b) = c; // 对a*b的结果赋值

    操作(a * b) = c显然不符合编程者的初衷,也没有任何意义。

    剖析:

      惊讶吗?小小的static和const居然有这么多功能,我们能回答几个?如果只能回答1~2个,那还真得闭关再好好修炼修炼。

      这个题可以考查面试者对程序设计知识的掌握程度是初级、中级还是比较深入,没有一定的知识广度和深度,不可能对这个问题给出全面的解答。大多数人只能回答出st­atic和const关键字的部分功能。

    4.技巧题

    试题1:请写一个C函数,若处理器是Big_endian的,则返回0;若是Little_endian的,则返回1

    解答:

    int checkCPU() 
    { 
        { 
            union w 
            { 
                 int a; 
                 char b; 
             } c; 
    
             c.a = 1; 
             return (c.b == 1); 
         }
    }                        

    剖析:

      嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数的存放方 式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。

    例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

    内存地址 存放内容
    0x4000 0x34
    0x4001 0x12

    而在Big-endian模式CPU内存中的存放方式则为:

    内存地址 存放内容
    0x4000 0x12
    0x4001 0x34

    32bit宽的数0x12345678在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

    内存地址 存放内容
    0x4000 0x78
    0x4001 0x56
    0x4002 0x34
    0x4003 0x12

    而在Big-endian模式CPU内存中的存放方式则为:

    内存地址 存放内容
    0x4000 0x12
    0x4001 0x34
    0x4002 0x56
    0x4003 0x78

    联合体union的存放顺序是所有成员都从低地址开始存放,面试者的解答利用该特性,轻松地获得了CPU对内存采用Little-endian还是Big-en­dian模式读写。如果谁能当场给出这个解答,那简直就是一个天才的程序员。

    试题2:写一个函数返回1+2+3+...+n的值(假定结果不会超过长整型变量的范围)

    解答:

    int Sum( int n ) 
    { 
        return ( (long)1 + n) * n / 2;  //或return (1l + n) * n / 2;
    }

    剖析:

      对于这个题,只能说,也许最简单的答案就是最好的答案。下面的解答,或者基于下面的解答思路去优化,不管怎么"折腾",其效率也不可能与直接return ( 1 l + n ) * n / 2相比!

    int Sum( int n ) 
    { 
        long sum = 0; 
    
        for( int i=1; i<=n; i++ ) 
        { 
              sum += i; 
        } 
    
        return sum;
    }

      所以程序员们需要敏感地将数学等知识用在程序设计中。

  • 相关阅读:
    EdgeX Foundry初体验(五)-- Web Console图形界面(v1.0.0)
    第十九节:SQLServer通过发布订阅实现主从同步(读写分离)详解
    第六节:Ocelot之自身负载、网关限流、缓存和熔断机制
    第十九节:SQLServer通过发布订阅实现主从同步(读写分离)详解
    第十七节:分区、分表、分库以及基于EFCore实现读写分离
    第六节:IdentityServer4设备流授权模式和扫码登录(应用于IOT)
    第五节:IdentityServer4的Pkce机制、令牌刷新机制、混合授权模式
    第十一节:IdentityServer4授权码模式介绍和代码实操演练
    第十二节:Ocelot集成IDS4认证授权-微服务主体架构完成
    第十节:IdentityServer4隐式模式介绍和代码实操演练
  • 原文地址:https://www.cnblogs.com/cslunatic/p/3356565.html
Copyright © 2020-2023  润新知