• 斐波那契数列寻找mod n 循环节 模板


    该代码来自ACdreamer

      1 #include <iostream>
      2 #include <string.h>
      3 #include <algorithm>
      4 #include <stdio.h>
      5 #include <math.h>
      6 
      7 using namespace std;
      8 typedef unsigned long long LL;
      9 
     10 const int M = 2;
     11 
     12 struct Matrix
     13 {
     14     LL m[M][M];
     15 };
     16 
     17 Matrix A;
     18 Matrix I = {1,0,0,1};
     19 
     20 Matrix multi(Matrix a,Matrix b,LL MOD)
     21 {
     22     Matrix c;
     23     for(int i=0; i<M; i++)
     24     {
     25         for(int j=0; j<M; j++)
     26         {
     27             c.m[i][j] = 0;
     28             for(int k=0; k<M; k++)
     29                 c.m[i][j] = (c.m[i][j]%MOD + (a.m[i][k]%MOD)*(b.m[k][j]%MOD)%MOD)%MOD;
     30             c.m[i][j] %= MOD;
     31         }
     32     }
     33     return c;
     34 }
     35 
     36 Matrix power(Matrix a,LL k,LL MOD)
     37 {
     38     Matrix ans = I,p = a;
     39     while(k)
     40     {
     41         if(k & 1)
     42         {
     43             ans = multi(ans,p,MOD);
     44             k--;
     45         }
     46         k >>= 1;
     47         p = multi(p,p,MOD);
     48     }
     49     return ans;
     50 }
     51 
     52 LL gcd(LL a,LL b)
     53 {
     54     return b? gcd(b,a%b):a;
     55 }
     56 
     57 const int N = 400005;
     58 const int NN = 5005;
     59 
     60 LL num[NN],pri[NN];
     61 LL fac[NN];
     62 int cnt,c;
     63 
     64 bool prime[N];
     65 int p[N];
     66 int k;
     67 
     68 void isprime()
     69 {
     70     k = 0;
     71     memset(prime,true,sizeof(prime));
     72     for(int i=2; i<N; i++)
     73     {
     74         if(prime[i])
     75         {
     76             p[k++] = i;
     77             for(int j=i+i; j<N; j+=i)
     78                 prime[j] = false;
     79         }
     80     }
     81 }
     82 
     83 LL quick_mod(LL a,LL b,LL m)
     84 {
     85     LL ans = 1;
     86     a %= m;
     87     while(b)
     88     {
     89         if(b & 1)
     90         {
     91             ans = ans * a % m;
     92             b--;
     93         }
     94         b >>= 1;
     95         a = a * a % m;
     96     }
     97     return ans;
     98 }
     99 
    100 LL legendre(LL a,LL p)
    101 {
    102     if(quick_mod(a,(p-1)>>1,p)==1) return 1;
    103     else                           return -1;
    104 }
    105 
    106 void Solve(LL n,LL pri[],LL num[])
    107 {
    108     cnt = 0;
    109     LL t = (LL)sqrt(1.0*n);
    110     for(int i=0; p[i]<=t; i++)
    111     {
    112         if(n%p[i]==0)
    113         {
    114             int a = 0;
    115             pri[cnt] = p[i];
    116             while(n%p[i]==0)
    117             {
    118                 a++;
    119                 n /= p[i];
    120             }
    121             num[cnt] = a;
    122             cnt++;
    123         }
    124     }
    125     if(n > 1)
    126     {
    127         pri[cnt] = n;
    128         num[cnt] = 1;
    129         cnt++;
    130     }
    131 }
    132 
    133 void Work(LL n)
    134 {
    135     c = 0;
    136     LL t = (LL)sqrt(1.0*n);
    137     for(int i=1; i<=t; i++)
    138     {
    139         if(n % i == 0)
    140         {
    141             if(i * i == n) fac[c++] = i;
    142             else
    143             {
    144                 fac[c++] = i;
    145                 fac[c++] = n / i;
    146             }
    147         }
    148     }
    149 }
    150 
    151 LL find_loop(LL n)
    152 {
    153     Solve(n,pri,num);
    154     LL ans=1;
    155     for(int i=0; i<cnt; i++)
    156     {
    157         LL record=1;
    158         if(pri[i]==2)
    159             record=3;
    160         else if(pri[i]==3)
    161             record=8;
    162         else if(pri[i]==5)
    163             record=20;
    164         else
    165         {
    166             if(legendre(5,pri[i])==1)
    167                 Work(pri[i]-1);
    168             else
    169                 Work(2*(pri[i]+1));
    170             sort(fac,fac+c);
    171             for(int k=0; k<c; k++)
    172             {
    173                 Matrix a = power(A,fac[k]-1,pri[i]);
    174                 LL x = (a.m[0][0]%pri[i]+a.m[0][1]%pri[i])%pri[i];
    175                 LL y = (a.m[1][0]%pri[i]+a.m[1][1]%pri[i])%pri[i];
    176                 if(x==1 && y==0)
    177                 {
    178                     record = fac[k];
    179                     break;
    180                 }
    181             }
    182         }
    183         for(int k=1; k<num[i]; k++)
    184             record *= pri[i];
    185         ans = ans/gcd(ans,record)*record;
    186     }
    187     return ans;
    188 }
    189 
    190 void Init()
    191 {
    192     A.m[0][0] = 1;
    193     A.m[0][1] = 1;
    194     A.m[1][0] = 1;
    195     A.m[1][1] = 0;
    196 }
    197 
    198 int main()
    199 {
    200     LL n;
    201     Init();
    202     isprime();
    203     while(cin>>n)
    204         cout<<find_loop(n)<<endl;
    205     return 0;
    206 }
  • 相关阅读:
    [动图演示]Redis 持久化 RDB/AOF 详解与实践
    挑战10个最难的Java面试题(附答案)【上】
    Python使用psutil模块,做你的电脑管家
    在线工具 正则表达式
    [USACO09JAN]Earthquake Damage
    [USACO09MAR]Moon Mooing
    [HNOI2005]汤姆的游戏
    [SDOI2010]大陆争霸
    [USACO08NOV]Cheering up the Cow
    [USACO08NOV]lites
  • 原文地址:https://www.cnblogs.com/cshg/p/5932207.html
Copyright © 2020-2023  润新知