简单总结一下最近学习的欧拉函数
欧拉函数定义:在数论,对正整数n,欧拉函数是小于等于n的数中与n互质的数的数目,记作φ(n)。
1、φ(1) = 1;
2、n为质数, φ(n) = n-1;
3、 n是某个质数的幂次 φ(pk) = pk - pk-1 = pk*(1 – 1/p)
证:这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。
φ(8) = 23 - 22 = 4;
4、 n可以分解为两个互质数的积, φ(p1*p2) = φ(p1)*φ(p2)(p1, p2 为质数, 以下同,不在赘述);
如 φ(56) = φ(7)*φ(8) = 4*6 = 24;
5、把n进行质因分解, 得到n = p1a1*p2a2*p3a3*p4a4……pkak
由(4)得 φ (n)= φ(p1a1)*φ(p2a2)*φ(p3a3)*φ(p4a4)……φ(pkak)
由(3)得 φ(n) = p1a1*(1 - 1/p1)*p2a2*(1-1/p2)*p3a3*(1 – 1/p3)*……*pkak*(1 – 1/pk)
6、由5结果得求欧拉函数的基本公式
φ(n)= n* (1 - 1/p1)*(1-1/p2)* (1 – 1/p3)*……*(1 – 1/pk)
特殊性质:当n为奇数时,φ(2n)=φ(n)
欧拉定理
a与n互质,aφ(n)≡ 1 (mod n)
当n为质数时有费马小定理
ap-1≡ 1 (mod p)
欧拉定理的推广——有关的高次幂取模(指数循环节)
公式: ax mod(c)=a(x mod phi(c) +phi(c)) mod(c), (x>=phi(c))
欧拉函数代码
1 const int MAXN = 1e6;//打表的范围 2 int prime[MAXN+10], cnt = 0; 3 int a[MAXN+10]; 4 5 void init(){//素数筛 6 for(int i = 2; i <= MAXN; i++) a[i] = true; 7 for(int i = 2; i <= MAXN; i++){ 8 if(a[i]){ 9 prime[++cnt] = i; 10 } 11 for(int j = 1; j <= cnt; j++){ 12 if(prime[j]*i > MAXN) break; 13 a[prime[j]*i] = false; 14 if(i%prime[j] == 0) break; 15 } 16 } 17 } 18 19 int Euler(int n){//欧拉函数 20 int ans = n; 21 for(int i = 1; i <= cnt && prime[i] <= n; i++){ 22 if(n%prime[i] == 0){ 23 while(n%prime[i] == 0){ 24 n /= prime[i]; 25 } 26 ans = ans/prime[i]*(prime[i]-1); 27 } 28 } 29 return ans; 30 }