Spark简介
Spark是一种快速、通用、可扩展的大数据分析引擎,目前,Spark生态系统已经发展成为一个包含多个子项目的集合,其中包含SparkSQL、Spark Streaming、GraphX、MLlib等子项目,Spark是基于内存计算的大数据并行计算框架。简单来说Spark是 内存迭代计算,每个算子将计算结果保存在内存中,其他算子,读取这个结果,继续计算。
Spark的四个特性:
1.快
Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流。
2.易用
Spark支持Java、Python和Scala的API,还支持超过80种高级算法,而且Spark支持交互式的Python和Scala的shell,可以非常方便地在这些shell中使用Spark集群来验证解决问题的方法。
依赖外部数据源hdfs、本地文件.kafka.flume.mysql.ELK)
3.通用
Spark提供了统一的解决方案。Spark可以用于批处理、交互式查询(Spark SQL)、实时流处理(Spark Streaming)、机器学习(Spark MLlib)和图计算(GraphX)。这些不同类型的处理都可以在同一个应用中无缝使用。
4.兼容性
Spark可以非常方便地与其他的开源产品进行融合。比如,Spark可以使用Hadoop的YARN和Apache Mesos作为它的资源管理和调度器,器,并且可以处理所有Hadoop支持的数据,包括HDFS、HBase和Cassandra等。它实现了Standalone作为其内置的资源管理和调度框架,使得所有人都可以非常容易地部署和使用Spark。
Spark的安装:
1.准备两台以上Linux服务器,安装好JDK1.7
2.在官网:http://spark.apache.org/ 中下载Spark安装包
http://www.apache.org/dyn/closer.lua/spark/spark-1.5.2/spark-1.5.2-bin-hadoop2.6.tgz
上传解压安装包
上传spark-1.5.2-bin-hadoop2.6.tgz安装包到Linux上
解压安装包到指定位置
tar -zxvf spark-1.5.2-bin-hadoop2.6.tgz -C /usr/local
3.进入到Spark安装目录
cd /usr/local/spark-1.5.2-bin-hadoop2.6
进入conf目录并重命名并修改spark-env.sh.template文件
cd conf/
mv spark-env.sh.template spark-env.sh
vi spark-env.sh
在该配置文件中添加如下配置
export JAVA_HOME=/usr/java/jdk1.7.0_45
export SPARK_MASTER_IP=机器的ip
export SPARK_MASTER_PORT=7077
保存退出
重命名并修改slaves.template文件
mv slaves.template slaves
vi slaves
在该文件中添加子节点所在的位置(Worker节点)
子节点机器地址1
子节点机器地址2
子节点机器地址3
保存退出
将配置好的Spark拷贝到其他节点上
scp -r spark-1.5.2-bin-hadoop2.6/ 子节点机器地址1:/usr/local/
scp -r spark-1.5.2-bin-hadoop2.6/ 子节点机器地址2:/usr/local/
scp -r spark-1.5.2-bin-hadoop2.6/ 子节点机器地址3:/usr/local/
Spark集群配置完毕,目前是1个Master,3个Work,在master所在机器上启动Spark集群
/usr/local/spark-1.5.2-bin-hadoop2.6/sbin/start-all.sh
启动后执行jps命令,主节点上有Master进程,其他子节点上有Work进行,登录Spark管理界面查看集群状态(主节点):http://master机器ip:8080/
到此为止,Spark集群安装完毕,但是有一个很大的问题,那就是Master节点存在单点故障,要解决此问题,就要借助zookeeper,并且启动至少两个Master节点来实现高可靠,配置方式比较简单:
Spark集群规划:node1,node2是Master;node3,node4,node5是Worker
安装配置zk集群,并启动zk集群
停止spark所有服务,修改配置文件spark-env.sh,在该配置文件中删掉SPARK_MASTER_IP并添加如下配置
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zk1,zk2,zk3 -Dspark.deploy.zookeeper.dir=/spark"
(1).在node1节点上修改slaves配置文件内容指定worker节点
(2).在node1上执行sbin/start-all.sh脚本,然后在node2上执行sbin/start-master.sh启动第二个Master 。
启动Spark Shell
spark-shell是Spark自带的交互式Shell程序,方便用户进行交互式编程,用户可以在该命令行下用scala编写spark程序。
/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell
--master spark://node1:7077
--executor-memory 2g
--total-executor-cores 2
参数说明:
--master spark://node1:7077 指定Master的地址
--executor-memory 2g 指定每个worker可用内存为2G
--total-executor-cores 2 指定整个集群使用的cup核数为2个
注意:
如果启动spark shell时没有指定master地址,但是也可以正常启动spark shell和执行spark shell中的程序,其实是启动了spark的local模式,该模式仅在本机启动一个进程,没有与集群建立联系。
Spark Shell中已经默认将SparkContext类初始化为对象sc。用户代码如果需要用到,则直接应用sc即可
WordCount程序
1.首先启动hdfs
2.向hdfs上传一个文件到hdfs://master机器ip:9000/words.txt
3.在spark shell中用scala语言编写spark程序
sc.textFile("hdfs://node1:9000/words.txt").flatMap(_.split(" "))
.map((_,1)).reduceByKey(_+_).saveAsTextFile("hdfs://node1:9000/out")
4.使用hdfs命令查看结果
hdfs dfs -ls hdfs://master机器ip:9000/out/p*
说明:
sc是SparkContext对象,该对象时提交spark程序的入口
textFile(hdfs:/master机器ip:9000/words.txt)是hdfs中读取数据
flatMap(_.split(" "))先map在压平
map((_,1))将单词和1构成元组
reduceByKey(_+_)按照key进行reduce,并将value累加
saveAsTextFile("hdfs://master机器ip:9000/out")将结果写入到hdfs中