• DFS(二):骑士游历问题


          在国际象棋的棋盘(8行×8列)上放置一个马,按照马走日字的规则,马要遍历棋盘,即到达棋盘上的每一格,并且每格只到达一次。例如,下图给出了骑士从坐标(1,5)出发,游历棋盘的一种可能情况。

    【例1】骑士游历问题。

           编写一个程序,对于给定的起始位置(x0,y0),探索出一条路径,沿着这条路径骑士能遍历棋盘上的所有单元格。

           (1)编程思路。

            采用深度优先搜索进行路径的探索。深度优先搜索用递归描述的一般框架为:

        void  dfs(int deep)      //  对deep层进行搜索

        {

              if  (符合某种要求||已经不能再搜了)

             {

                   按要求进行一些处理,一般为输出;

                   return ;

             }

             if   (符合某种条件且有地方可以继续搜索的)   // 这里可能会有多种情况,可能要循环什么的

            {

                 vis[x][y]=1;                       //  表示结点(x,y)已访问到

                 dfs(deep+1);                    //  搜索下一层

                 vis[x][y]=0;                      // 改回来,表示结点(x,y)以后可能被访问
            }
        } 

          定义数组int vis[10][10]记录骑士走到的步数,vis[x][y]=num表示骑士从起点开始走到坐标为(x,y)的格子用了num步(设起点的步数为1)。初始时vis数组元素的值全部为0。

     (2)源程序。

    #include <stdio.h>

    #include <stdlib.h>

    int N,M;

    int vis[10][10]={0};

    // 定义马走的8个方向

    int dir_x[8] = {-1,-2,-2,-1,1,2,2,1};

    int dir_y[8] = {2,1,-1,-2,-2,-1,1,2};

    void print()

    {

           int i,j;

           for(i=0; i<N; i++)

           {

               for(j=0; j<M; j++)

                   printf("%3d ",vis[i][j]);

               printf(" ");

            }

    }

    void DFS(int cur_x,int cur_y,int step)

    {

       if(step==N*M+1 )

       {

            print();

            exit(1);

       } 

       int next_x,next_y;

       for(int i=0; i<8; i++)

       {

         next_x = cur_x+dir_x[i];

         next_y = cur_y+dir_y[i];

         if (next_x<0 || next_x>=N || next_y<0 || next_y>=M || vis[next_x][next_y]!=0)

              continue;

         vis[next_x][next_y] = step;

         DFS(next_x,next_y,step+1);

         vis[next_x][next_y] = 0;

       }

    }

    int main()

    {

       printf("请输入棋盘的行数和列数(均小于10):");

       scanf("%d %d",&N,&M);

       printf("请输入出发点坐标:(0—%d,0-%d):",N-1,M-1);

       int x0,y0;

       scanf("%d%d",&x0,&y0);

       vis[x0][y0] = 1;

       DFS(x0,y0,2);

       return 0;

           (3)运行效果。

         

     【例2】A Knight's Journey(POJ 2488)

    Description
    Background
    The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans?
    Problem
    Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
    Input
    The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
    Output
    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.
    If no such path exist, you should output impossible on a single line.
    Sample Input
    3
    1 1
    2 3
    4 3
    Sample Output
    Scenario #1:
    A1

    Scenario #2:
    impossible

    Scenario #3:
    A1B3C1A2B4C2A3B1C3A4B2C4

          (1)编程思路。

           同样用深度优先搜索。但由于题目要输出字典序最小的,所以遍历时8个方向的偏移组合顺序为:{-2,-1}, {-2,1}, {-1,-2}, {-1,2}, {1,-2}, {1,2}, {2,-1}, {2,1}。

          (2)源程序。

    #include<stdio.h>  

    int dir_x[8] = {-2,-2,-1,-1, 1, 1, 2, 2};

    int dir_y[8] = {-1, 1,-2, 2,-2, 2,-1, 1};

    int vis[27][27]; 

    int len,x,y; 

    bool flag; 

    struct Node 

        int x,y; 

    }node[1000]; 

    void DFS(int cur_x,int cur_y) 

        if(len==x*y) 

        { 

            flag=true; 

            return ; 

        } 

        for(int i=0; i<8; i++) 

        { 

            int next_x=cur_x+dir_x[i]; 

            int next_y=cur_y+dir_y[i]; 

            if(next_x>0 && next_x<=x && next_y>0 && next_y<=y && vis[next_x][next_y]!=1) 

            { 

                node[len].x=next_x; 

                node[len].y=next_y; 

                vis[next_x][next_y]=1; 

                ++len;

                DFS(next_x,next_y); 

                if(len==x*y) 

                { 

                    flag=true; 

                    return ; 

                } 

                --len; 

                vis[next_x][next_y]=0; 

            } 

        } 

    int main() 

        int nCase; 

        int n,i,j; 

        scanf("%d",&nCase); 

        for(n=1; n<=nCase; n++) 

        { 

            flag=false; 

            len=0;

            for (i=0;i<27;i++)

               for (j=0;j<27;j++)

                   vis[i][j]=0; 

            node[0].x=1; 

            node[0].y=1; 

            vis[1][1]=1; 

            scanf("%d%d",&y,&x); 

            ++len; 

            DFS(1,1); 

            printf("Scenario #%d: ",n); 

            if(flag==false) 

            { 

                printf("impossible ");

                continue; 

            } 

            for(i=0; i<len; i++) 

            { 

                printf("%c%d",(node[i].x-1)+'A',node[i].y); 

            } 

            printf(" ");

                } 

        return 0; 

    }

  • 相关阅读:
    Unity3D 利用C#实现简单的代理模式Delegate(委托)
    代码删除文件夹,小心资源管理器报错,甚至崩溃【原】
    如何解决“应用程序并行配置不正确”问题?【原】
    STL,ATL,WTL的联系与区别
    C++虚函数表解析(转)
    学各国语言的网站大全
    The 500 Most Commonly Used Words in the English Language
    Top 100 English Verbs
    Top 100 words for advanced learners.
    TOP 100 MISSPELT/MISSPELLED WORDS IN ENGLISH
  • 原文地址:https://www.cnblogs.com/cs-whut/p/11153529.html
Copyright © 2020-2023  润新知